
GNU Make

GNU Make

A Program for Directing Recompilation
Edition 0.47, for make Version 3.72 Beta.

November 1994

Richard M. Stallman and Roland McGrath

Copyright c 1988, '89, '90, '91, '92, '93, '94 Free Software Foundation, Inc.

Published by the Free Software Foundation

675 Massachusetts Avenue,

Cambridge, MA 02139 USA

Printed copies are available for $20 each.

ISBN 1-882114-50-7

Permission is granted to make and distribute verbatim copies of this manual provided the copyright

notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modi�ed versions of this manual under the conditions

for verbatim copying, provided that the entire resulting derived work is distributed under the terms

of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another language,

under the above conditions for modi�ed versions, except that this permission notice may be stated

in a translation approved by the Free Software Foundation.

Cover art by Etienne Suvasa.

Chapter 1: Overview of make 1

POSIX
IEEE Standard
standards confo

1 Overview of make

The make utility automatically determines which pieces of a large program need to be recompiled,

and issues commands to recompile them. This manual describes GNU make, which was implemented

by Richard Stallman and Roland McGrath. GNU make conforms to section 6.2 of IEEE Standard

1003.2-1992 (POSIX.2).

Our examples show C programs, since they are most common, but you can use make with

any programming language whose compiler can be run with a shell command. Indeed, make is

not limited to programs. You can use it to describe any task where some �les must be updated

automatically from others whenever the others change.

To prepare to use make, you must write a �le called the make�le that describes the relationships

among �les in your program and provides commands for updating each �le. In a program, typically,

the executable �le is updated from object �les, which are in turn made by compiling source �les.

Once a suitable make�le exists, each time you change some source �les, this simple shell com-

mand:

make

su�ces to perform all necessary recompilations. The make program uses the make�le data base and

the last-modi�cation times of the �les to decide which of the �les need to be updated. For each of

those �les, it issues the commands recorded in the data base.

You can provide command line arguments to make to control which �les should be recompiled,

or how. See Chapter 9 [How to Run make], page 89.

1.1 How to Read This Manual

If you are new to make, or are looking for a general introduction, read the �rst few sections of each

chapter, skipping the later sections. In each chapter, the �rst few sections contain introductory

or general information and the later sections contain specialized or technical information. The

exception is Chapter 2 [An Introduction to Make�les], page 5, all of which is introductory.

2 GNU make

reporting bugs
bugs, reporting
problems and b

If you are familiar with other make programs, see Chapter 12 [Features of GNU make], page 125,

which lists the enhancements GNU make has, and Chapter 13 [Incompatibilities and Missing Fea-

tures], page 129, which explains the few things GNU make lacks that others have.

For a quick summary, see Section 9.7 [Options Summary], page 95, Appendix A [Quick Refer-

ence], page 143, and Section 4.7 [Special Targets], page 30.

1.2 Problems and Bugs

If you have problems with GNU make or think you've found a bug, please report it to the

developers; we cannot promise to do anything but we might well want to �x it.

Before reporting a bug, make sure you've actually found a real bug. Carefully reread the

documentation and see if it really says you can do what you're trying to do. If it's not clear whether

you should be able to do something or not, report that too; it's a bug in the documentation!

Before reporting a bug or trying to �x it yourself, try to isolate it to the smallest possible

make�le that reproduces the problem. Then send us the make�le and the exact results make gave

you. Also say what you expected to occur; this will help us decide whether the problem was really

in the documentation.

Once you've got a precise problem, please send electronic mail either through the Internet or

via UUCP:

Internet address:
bug-gnu-utils@prep.ai.mit.edu

UUCP path:
mit-eddie!prep.ai.mit.edu!bug-gnu-utils

Please include the version number of make you are using. You can get this information with the

command `make --version'. Be sure also to include the type of machine and operating system

you are using. If possible, include the contents of the �le `config.h' that is generated by the

con�guration process.

Non-bug suggestions are always welcome as well. If you have questions about things that are

unclear in the documentation or are just obscure features, send a message to the bug reporting

address. We cannot guarantee you'll get help with your problem, but many seasoned make users

Chapter 1: Overview of make 3

read the mailing list and they will probably try to help you out. The maintainers sometimes answer

such questions as well, when time permits.

4 GNU make

Chapter 2: An Introduction to Make�les 5

make�le
recompilation
editor
rule, introductio
make�le rule pa
parts of make�l
targets, introdu
dependencies, in
commands, intr
tabs in rules

2 An Introduction toMake�les

You need a �le called a make�le to tell make what to do. Most often, the make�le tells make

how to compile and link a program.

In this chapter, we will discuss a simple make�le that describes how to compile and link a text

editor which consists of eight C source �les and three header �les. The make�le can also tell make

how to run miscellaneous commands when explicitly asked (for example, to remove certain �les as

a clean-up operation). To see a more complex example of a make�le, see Appendix B [Complex

Make�le], page 149.

When make recompiles the editor, each changed C source �le must be recompiled. If a header

�le has changed, each C source �le that includes the header �le must be recompiled to be safe.

Each compilation produces an object �le corresponding to the source �le. Finally, if any source �le

has been recompiled, all the object �les, whether newly made or saved from previous compilations,

must be linked together to produce the new executable editor.

2.1 What a Rule Looks Like

A simple make�le consists of \rules" with the following shape:

target : : : : dependencies : : :

command
: : :

: : :

A target is usually the name of a �le that is generated by a program; examples of targets are

executable or object �les. A target can also be the name of an action to carry out, such as `clean'

(see Section 4.4 [Phony Targets], page 27).

A dependency is a �le that is used as input to create the target. A target often depends on

several �les.

A command is an action that make carries out. A rule may have more than one command, each

on its own line. Please note: you need to put a tab character at the beginning of every command

line! This is an obscurity that catches the unwary.

6 GNU make

simple make�le
make�le, simple

Usually a command is in a rule with dependencies and serves to create a target �le if any of

the dependencies change. However, the rule that speci�es commands for the target need not have

dependencies. For example, the rule containing the delete command associated with the target

`clean' does not have dependencies.

A rule, then, explains how and when to remake certain �les which are the targets of the particular

rule. make carries out the commands on the dependencies to create or update the target. A rule

can also explain how and when to carry out an action. See Chapter 4 [Writing Rules], page 19.

A make�le may contain other text besides rules, but a simple make�le need only contain rules.

Rules may look somewhat more complicated than shown in this template, but all �t the pattern

more or less.

2.2 A Simple Make�le

Here is a straightforward make�le that describes the way an executable �le called edit depends

on eight object �les which, in turn, depend on eight C source and three header �les.

In this example, all the C �les include `defs.h', but only those de�ning editing commands

include `command.h', and only low level �les that change the editor bu�er include `buffer.h'.

Chapter 2: An Introduction to Make�les 7

continuation lin
\ (backslash), f
backslash (\), f
quoting newline
newline, quotin

edit : main.o kbd.o command.o display.o \

insert.o search.o files.o utils.o

cc -o edit main.o kbd.o command.o display.o \

insert.o search.o files.o utils.o

main.o : main.c defs.h

cc -c main.c

kbd.o : kbd.c defs.h command.h

cc -c kbd.c

command.o : command.c defs.h command.h

cc -c command.c

display.o : display.c defs.h buffer.h

cc -c display.c

insert.o : insert.c defs.h buffer.h

cc -c insert.c

search.o : search.c defs.h buffer.h

cc -c search.c

files.o : files.c defs.h buffer.h command.h

cc -c files.c

utils.o : utils.c defs.h

cc -c utils.c

clean :

rm edit main.o kbd.o command.o display.o \

insert.o search.o files.o utils.o

We split each long line into two lines using backslash-newline; this is like using one long line, but

is easier to read.

To use this make�le to create the executable �le called `edit', type:

make

To use this make�le to delete the executable �le and all the object �les from the directory, type:

make clean

In the example make�le, the targets include the executable �le `edit', and the object �les

`main.o' and `kbd.o'. The dependencies are �les such as `main.c' and `defs.h'. In fact, each `.o'

�le is both a target and a dependency. Commands include `cc -c main.c' and `cc -c kbd.c'.

When a target is a �le, it needs to be recompiled or relinked if any of its dependencies change.

In addition, any dependencies that are themselves automatically generated should be updated �rst.

8 GNU make

shell command
clean target
rm (shell comm
processing a ma
make�le, how m
default goal
goal, default
goal

In this example, `edit' depends on each of the eight object �les; the object �le `main.o' depends

on the source �le `main.c' and on the header �le `defs.h'.

A shell command follows each line that contains a target and dependencies. These shell com-

mands say how to update the target �le. A tab character must come at the beginning of every

command line to distinguish commands lines from other lines in the make�le. (Bear in mind that

make does not know anything about how the commands work. It is up to you to supply commands

that will update the target �le properly. All make does is execute the commands in the rule you

have speci�ed when the target �le needs to be updated.)

The target `clean' is not a �le, but merely the name of an action. Since you normally do

not want to carry out the actions in this rule, `clean' is not a dependency of any other rule.

Consequently, make never does anything with it unless you tell it speci�cally. Note that this rule

not only is not a dependency, it also does not have any dependencies, so the only purpose of the

rule is to run the speci�ed commands. Targets that do not refer to �les but are just actions are

called phony targets. See Section 4.4 [Phony Targets], page 27, for information about this kind of

target. See Section 5.4 [Errors in Commands], page 44, to see how to cause make to ignore errors

from rm or any other command.

2.3 How make Processes a Make�le

By default, make starts with the �rst rule (not counting rules whose target names start with

`.'). This is called the default goal. (Goals are the targets that make strives ultimately to update.

See Section 9.2 [Arguments to Specify the Goals], page 89.)

In the simple example of the previous section, the default goal is to update the executable

program `edit'; therefore, we put that rule �rst.

Thus, when you give the command:

make

make reads the make�le in the current directory and begins by processing the �rst rule. In the

example, this rule is for relinking `edit'; but before make can fully process this rule, it must

process the rules for the �les that `edit' depends on, which in this case are the object �les. Each

of these �les is processed according to its own rule. These rules say to update each `.o' �le by

compiling its source �le. The recompilation must be done if the source �le, or any of the header

�les named as dependencies, is more recent than the object �le, or if the object �le does not exist.

Chapter 2: An Introduction to Make�les 9

relinking
variables
simplifying with
objects
OBJECTS
objs
OBJS
obj
OBJ

The other rules are processed because their targets appear as dependencies of the goal. If

some other rule is not depended on by the goal (or anything it depends on, etc.), that rule is not

processed, unless you tell make to do so (with a command such as make clean).

Before recompiling an object �le, make considers updating its dependencies, the source �le and

header �les. This make�le does not specify anything to be done for them|the `.c' and `.h' �les

are not the targets of any rules|so make does nothing for these �les. But make would update

automatically generated C programs, such as those made by Bison or Yacc, by their own rules at

this time.

After recompiling whichever object �les need it, make decides whether to relink `edit'. This

must be done if the �le `edit' does not exist, or if any of the object �les are newer than it. If an

object �le was just recompiled, it is now newer than `edit', so `edit' is relinked.

Thus, if we change the �le `insert.c' and run make, make will compile that �le to update

`insert.o', and then link `edit'. If we change the �le `command.h' and run make, make will

recompile the object �les `kbd.o', `command.o' and `files.o' and then link the �le `edit'.

2.4 Variables Make Make�les Simpler

In our example, we had to list all the object �les twice in the rule for `edit' (repeated here):

edit : main.o kbd.o command.o display.o \

insert.o search.o files.o utils.o

cc -o edit main.o kbd.o command.o display.o \

insert.o search.o files.o utils.o

Such duplication is error-prone; if a new object �le is added to the system, we might add it

to one list and forget the other. We can eliminate the risk and simplify the make�le by using a

variable. Variables allow a text string to be de�ned once and substituted in multiple places later

(see Chapter 6 [How to Use Variables], page 55).

It is standard practice for every make�le to have a variable named objects, OBJECTS, objs,

OBJS, obj, or OBJ which is a list of all object �le names. We would de�ne such a variable objects

with a line like this in the make�le:

objects = main.o kbd.o command.o display.o \

insert.o search.o files.o utils.o

10 GNU make

deducing comm
implicit rule, in
rule, implicit, in

Then, each place we want to put a list of the object �le names, we can substitute the variable's

value by writing `$(objects)' (see Chapter 6 [How to Use Variables], page 55).

Here is how the complete simple make�le looks when you use a variable for the object �les:

objects = main.o kbd.o command.o display.o \

insert.o search.o files.o utils.o

edit : $(objects)

cc -o edit $(objects)

main.o : main.c defs.h

cc -c main.c

kbd.o : kbd.c defs.h command.h

cc -c kbd.c

command.o : command.c defs.h command.h

cc -c command.c

display.o : display.c defs.h buffer.h

cc -c display.c

insert.o : insert.c defs.h buffer.h

cc -c insert.c

search.o : search.c defs.h buffer.h

cc -c search.c

files.o : files.c defs.h buffer.h command.h

cc -c files.c

utils.o : utils.c defs.h

cc -c utils.c

clean :

rm edit $(objects)

2.5 Letting makeDeduce the Commands

It is not necessary to spell out the commands for compiling the individual C source �les, because

make can �gure them out: it has an implicit rule for updating a `.o' �le from a correspondingly

named `.c' �le using a `cc -c' command. For example, it will use the command `cc -c main.c -o

main.o' to compile `main.c' into `main.o'. We can therefore omit the commands from the rules

for the object �les. See Chapter 10 [Using Implicit Rules], page 101.

When a `.c' �le is used automatically in this way, it is also automatically added to the list of

dependencies. We can therefore omit the `.c' �les from the dependencies, provided we omit the

commands.

Chapter 2: An Introduction to Make�les 11

combining rules

Here is the entire example, with both of these changes, and a variable objects as suggested

above:

objects = main.o kbd.o command.o display.o \

insert.o search.o files.o utils.o

edit : $(objects)

cc -o edit $(objects)

main.o : defs.h

kbd.o : defs.h command.h

command.o : defs.h command.h

display.o : defs.h buffer.h

insert.o : defs.h buffer.h

search.o : defs.h buffer.h

files.o : defs.h buffer.h command.h

utils.o : defs.h

.PHONY : clean

clean :

-rm edit $(objects)

This is how we would write the make�le in actual practice. (The complications associated with

`clean' are described elsewhere. See Section 4.4 [Phony Targets], page 27, and Section 5.4 [Errors

in Commands], page 44.)

Because implicit rules are so convenient, they are important. You will see them used frequently.

2.6 Another Style of Make�le

When the objects of a make�le are created only by implicit rules, an alternative style of make�le

is possible. In this style of make�le, you group entries by their dependencies instead of by their

targets. Here is what one looks like:

objects = main.o kbd.o command.o display.o \

insert.o search.o files.o utils.o

edit : $(objects)

cc -o edit $(objects)

$(objects) : defs.h

kbd.o command.o files.o : command.h

display.o insert.o search.o files.o : buffer.h

12 GNU make

cleaning up
removing, to cle
clean target

Here `defs.h' is given as a dependency of all the object �les; `command.h' and `buffer.h' are

dependencies of the speci�c object �les listed for them.

Whether this is better is a matter of taste: it is more compact, but some people dislike it because

they �nd it clearer to put all the information about each target in one place.

2.7 Rules for Cleaning the Directory

Compiling a program is not the only thing you might want to write rules for. Make�les commonly

tell how to do a few other things besides compiling a program: for example, how to delete all the

object �les and executables so that the directory is `clean'.

Here is how we could write a make rule for cleaning our example editor:

clean:

rm edit $(objects)

In practice, we might want to write the rule in a somewhat more complicated manner to handle

unanticipated situations. We would do this:

.PHONY : clean

clean :

-rm edit $(objects)

This prevents make from getting confused by an actual �le called `clean' and causes it to continue

in spite of errors from rm. (See Section 4.4 [Phony Targets], page 27, and Section 5.4 [Errors in

Commands], page 44.)

A rule such as this should not be placed at the beginning of the make�le, because we do not want

it to run by default! Thus, in the example make�le, we want the rule for edit, which recompiles

the editor, to remain the default goal.

Since clean is not a dependency of edit, this rule will not run at all if we give the command

`make' with no arguments. In order to make the rule run, we have to type `make clean'. See

Chapter 9 [How to Run make], page 89.

Chapter 3: Writing Make�les 13

make�le, how to
rule, explicit, de
explicit rule, de
rule, implicit, d
implicit rule, de
variable de�niti
directive
comments, in m
(comments), i
make�le name
name of make�l
default make�le
�le name of ma

3 WritingMake�les

The information that tells make how to recompile a system comes from reading a data base

called the make�le.

3.1 What Make�les Contain

Make�les contain �ve kinds of things: explicit rules, implicit rules, variable de�nitions, directives,

and comments. Rules, variables, and directives are described at length in later chapters.

� An explicit rule says when and how to remake one or more �les, called the rule's targets. It

lists the other �les that the targets depend on, and may also give commands to use to create

or update the targets. See Chapter 4 [Writing Rules], page 19.

� An implicit rule says when and how to remake a class of �les based on their names. It describes

how a target may depend on a �le with a name similar to the target and gives commands to

create or update such a target. See Chapter 10 [Using Implicit Rules], page 101.

� A variable de�nition is a line that speci�es a text string value for a variable that can be

substituted into the text later. The simple make�le example shows a variable de�nition for

objects as a list of all object �les (see Section 2.4 [Variables Make Make�les Simpler], page 9).

� A directive is a command for make to do something special while reading the make�le. These

include:

� Reading another make�le (see Section 3.3 [Including Other Make�les], page 14).

� Deciding (based on the values of variables) whether to use or ignore a part of the make�le

(see Chapter 7 [Conditional Parts of Make�les], page 71).

� De�ning a variable from a verbatim string containing multiple lines (see Section 6.8 [De�n-

ing Variables Verbatim], page 67).

� `#' in a line of a make�le starts a comment. It and the rest of the line are ignored, except

that a trailing backslash not escaped by another backslash will continue the comment across

multiple lines. Comments may appear on any of the lines in the make�le, except within a

define directive, and perhaps within commands (where the shell decides what is a comment).

A line containing just a comment (with perhaps spaces before it) is e�ectively blank, and is

ignored.

3.2 What Name to Give Your Make�le

14 GNU make

Makefile
GNUmakefile
makefile
README
-f
--file
--makefile
specifying make
make�le name,
name of make�l
�le name of ma
including other
make�le, includ
include
shell �le name p
shell wildcards
wildcard, in inc

By default, when make looks for the make�le, it tries the following names, in order: `GNUmakefile',

`makefile' and `Makefile'.

Normally you should call your make�le either `makefile' or `Makefile'. (We recommend

`Makefile' because it appears prominently near the beginning of a directory listing, right near

other important �les such as `README'.) The �rst name checked, `GNUmakefile', is not recom-

mended for most make�les. You should use this name if you have a make�le that is speci�c to

GNU make, and will not be understood by other versions of make. Other make programs look for

`makefile' and `Makefile', but not `GNUmakefile'.

If make �nds none of these names, it does not use any make�le. Then you must specify a goal

with a command argument, and make will attempt to �gure out how to remake it using only its

built-in implicit rules. See Chapter 10 [Using Implicit Rules], page 101.

If you want to use a nonstandard name for your make�le, you can specify the make�le name

with the `-f' or `--file' option. The arguments `-f name' or `--file=name' tell make to read the

�le name as the make�le. If you use more than one `-f' or `--file' option, you can specify several

make�les. All the make�les are e�ectively concatenated in the order speci�ed. The default make�le

names `GNUmakefile', `makefile' and `Makefile' are not checked automatically if you specify `-f'

or `--file'.

3.3 Including Other Make�les

The include directive tells make to suspend reading the current make�le and read one or more

other make�les before continuing. The directive is a line in the make�le that looks like this:

include �lenames: : :

�lenames can contain shell �le name patterns.

Extra spaces are allowed and ignored at the beginning of the line, but a tab is not allowed. (If

the line begins with a tab, it will be considered a command line.) Whitespace is required between

include and the �le names, and between �le names; extra whitespace is ignored there and at the

end of the directive. A comment starting with `#' is allowed at the end of the line. If the �le

names contain any variable or function references, they are expanded. See Chapter 6 [How to Use

Variables], page 55.

Chapter 3: Writing Make�les 15

dependencies, a
automatic gener
generating depe
-I
--include-dir
/usr/gnu/incl
/usr/local/in
/usr/include

For example, if you have three `.mk' �les, `a.mk', `b.mk', and `c.mk', and $(bar) expands to

bish bash, then the following expression

include foo *.mk $(bar)

is equivalent to

include foo a.mk b.mk c.mk bish bash

When make processes an include directive, it suspends reading of the containing make�le and

reads from each listed �le in turn. When that is �nished, make resumes reading the make�le in

which the directive appears.

One occasion for using include directives is when several programs, handled by individual

make�les in various directories, need to use a common set of variable de�nitions (see Section 6.5

[Setting Variables], page 63) or pattern rules (see Section 10.5 [De�ning and Rede�ning Pattern

Rules], page 109).

Another such occasion is when you want to generate dependencies from source �les automati-

cally; the dependencies can be put in a �le that is included by the main make�le. This practice

is generally cleaner than that of somehow appending the dependencies to the end of the main

make�le as has been traditionally done with other versions of make. See Section 4.12 [Automatic

Dependencies], page 37.

If the speci�ed name does not start with a slash, and the �le is not found in the current

directory, several other directories are searched. First, any directories you have speci�ed with

the `-I' or `--include-dir' option are searched (see Section 9.7 [Summary of Options], page 95).

Then the following directories (if they exist) are searched, in this order: `pre�x/include' (normally

`/usr/local/include') `/usr/gnu/include', `/usr/local/include', `/usr/include'.

If an included make�le cannot be found in any of these directories, a warning message is gen-

erated, but it is not an immediately fatal error; processing of the make�le containing the include

continues. Once it has �nished reading make�les, make will try to remake any that are out of date

or don't exist. See Section 3.5 [How Make�les Are Remade], page 16. Only after it has tried to

�nd a way to remake a make�le and failed, will make diagnose the missing make�le as a fatal error.

If you want make to simply ignore a make�le which does not exist and cannot be remade, with

no error message, use the -include directive instead of include, like this:

16 GNU make

make�le, and MA
including (MAKE
MAKEFILES
recursion, and M
updating make�
remaking make�
make�le, remak

-include �lenames: : :

This is acts like include in every way except that there is no error (not even a warning) if any

of the �lenames do not exist.

3.4 The Variable MAKEFILES

If the environment variable MAKEFILES is de�ned, make considers its value as a list of names

(separated by whitespace) of additional make�les to be read before the others. This works much

like the include directive: various directories are searched for those �les (see Section 3.3 [Including

Other Make�les], page 14). In addition, the default goal is never taken from one of these make�les

and it is not an error if the �les listed in MAKEFILES are not found.

The main use of MAKEFILES is in communication between recursive invocations of make (see

Section 5.6 [Recursive Use of make], page 46). It usually is not desirable to set the environment

variable before a top-level invocation of make, because it is usually better not to mess with a

make�le from outside. However, if you are running make without a speci�c make�le, a make�le

in MAKEFILES can do useful things to help the built-in implicit rules work better, such as de�ning

search paths (see Section 4.3 [Directory Search], page 23).

Some users are tempted to set MAKEFILES in the environment automatically on login, and pro-

gram make�les to expect this to be done. This is a very bad idea, because such make�les will fail to

work if run by anyone else. It is much better to write explicit include directives in the make�les.

See Section 3.3 [Including Other Make�les], page 14.

3.5 HowMake�les Are Remade

Sometimes make�les can be remade from other �les, such as RCS or SCCS �les. If a make�le

can be remade from other �les, you probably want make to get an up-to-date version of the make�le

to read in.

To this end, after reading in all make�les, make will consider each as a goal target and attempt to

update it. If a make�le has a rule which says how to update it (found either in that very make�le or

in another one) or if an implicit rule applies to it (see Chapter 10 [Using Implicit Rules], page 101),

it will be updated if necessary. After all make�les have been checked, if any have actually been

changed, make starts with a clean slate and reads all the make�les over again. (It will also attempt

Chapter 3: Writing Make�les 17

to update each of them over again, but normally this will not change them again, since they are

already up to date.)

If the make�les specify a double-colon rule to remake a �le with commands but no dependencies,

that �le will always be remade (see Section 4.11 [Double-Colon], page 36). In the case of make�les,

a make�le that has a double-colon rule with commands but no dependencies will be remade every

time make is run, and then again after make starts over and reads the make�les in again. This would

cause an in�nite loop: make would constantly remake the make�le, and never do anything else. So,

to avoid this, make will not attempt to remake make�les which are speci�ed as double-colon targets

but have no dependencies.

If you do not specify any make�les to be read with `-f' or `--file' options, make will try

the default make�le names; see Section 3.2 [What Name to Give Your Make�le], page 13. Unlike

make�les explicitly requested with `-f' or `--file' options, make is not certain that these make�les

should exist. However, if a default make�le does not exist but can be created by running make

rules, you probably want the rules to be run so that the make�le can be used.

Therefore, if none of the default make�les exists, make will try to make each of them in the same

order in which they are searched for (see Section 3.2 [What Name to Give Your Make�le], page 13)

until it succeeds in making one, or it runs out of names to try. Note that it is not an error if make

cannot �nd or make any make�le; a make�le is not always necessary.

When you use the `-t' or `--touch' option (see Section 9.3 [Instead of Executing the Commands],

page 91), you would not want to use an out-of-date make�le to decide which targets to touch. So

the `-t' option has no e�ect on updating make�les; they are really updated even if `-t' is speci�ed.

Likewise, `-q' (or `--question') and `-n' (or `--just-print') do not prevent updating of make�les,

because an out-of-date make�le would result in the wrong output for other targets. Thus, `make -f

mfile -n foo' will update `mfile', read it in, and then print the commands to update `foo' and

its dependencies without running them. The commands printed for `foo' will be those speci�ed in

the updated contents of `mfile'.

However, on occasion you might actually wish to prevent updating of even the make�les. You

can do this by specifying the make�les as goals in the command line as well as specifying them as

make�les. When the make�le name is speci�ed explicitly as a goal, the options `-t' and so on do

apply to them.

Thus, `make -f mfile -n mfile foo' would read the make�le `mfile', print the commands

needed to update it without actually running them, and then print the commands needed to

18 GNU make

overriding make
make�le, overrid
match-anything

update `foo' without running them. The commands for `foo' will be those speci�ed by the existing

contents of `mfile'.

3.6 Overriding Part of Another Make�le

Sometimes it is useful to have a make�le that is mostly just like another make�le. You can often

use the `include' directive to include one in the other, and add more targets or variable de�nitions.

However, if the two make�les give di�erent commands for the same target, make will not let you

just do this. But there is another way.

In the containing make�le (the one that wants to include the other), you can use a match-

anything pattern rule to say that to remake any target that cannot be made from the information

in the containing make�le, make should look in another make�le. See Section 10.5 [Pattern Rules],

page 109, for more information on pattern rules.

For example, if you have a make�le called `Makefile' that says how to make the target `foo'

(and other targets), you can write a make�le called `GNUmakefile' that contains:

foo:

frobnicate > foo

%: force

@$(MAKE) -f Makefile $@

force: ;

If you say `make foo', make will �nd `GNUmakefile', read it, and see that to make `foo', it needs

to run the command `frobnicate > foo'. If you say `make bar', make will �nd no way to make

`bar' in `GNUmakefile', so it will use the commands from the pattern rule: `make -f Makefile

bar'. If `Makefile' provides a rule for updating `bar', make will apply the rule. And likewise for

any other target that `GNUmakefile' does not say how to make.

The way this works is that the pattern rule has a pattern of just `%', so it matches any target

whatever. The rule speci�es a dependency `force', to guarantee that the commands will be run

even if the target �le already exists. We give `force' target empty commands to prevent make from

searching for an implicit rule to build it|otherwise it would apply the same match-anything rule

to `force' itself and create a dependency loop!

Chapter 4: Writing Rules 19

writing rules
rule, how to wr
target
dependency
default goal
goal, default
rule syntax
syntax of rules
targets
rule targets
commands
tab character (i

4 Writing Rules

A rule appears in the make�le and says when and how to remake certain �les, called the rule's

targets (most often only one per rule). It lists the other �les that are the dependencies of the

target, and commands to use to create or update the target.

The order of rules is not signi�cant, except for determining the default goal: the target for make

to consider, if you do not otherwise specify one. The default goal is the target of the �rst rule in

the �rst make�le. If the �rst rule has multiple targets, only the �rst target is taken as the default.

There are two exceptions: a target starting with a period is not a default unless it contains one or

more slashes, `/', as well; and, a target that de�nes a pattern rule has no e�ect on the default goal.

(See Section 10.5 [De�ning and Rede�ning Pattern Rules], page 109.)

Therefore, we usually write the make�le so that the �rst rule is the one for compiling the entire

program or all the programs described by the make�le (often with a target called `all'). See

Section 9.2 [Arguments to Specify the Goals], page 89.

4.1 Rule Syntax

In general, a rule looks like this:

targets : dependencies
command
: : :

or like this:

targets : dependencies ; command
command
: : :

The targets are �le names, separated by spaces. Wildcard characters may be used (see Sec-

tion 4.2 [Using Wildcard Characters in File Names], page 20) and a name of the form `a(m)'

represents member m in archive �le a (see Section 11.1 [Archive Members as Targets], page 121).

Usually there is only one target per rule, but occasionally there is a reason to have more (see

Section 4.8 [Multiple Targets in a Rule], page 32).

20 GNU make

dollar sign ($),
$, in rules
rule, and $
dependencies
rule dependenci
wildcard
�le name with w
globbing (wildc
* (wildcard cha
? (wildcard cha
[: : :] (wildcard
~ (tilde)
tilde (~)
home directory

The command lines start with a tab character. The �rst command may appear on the line after

the dependencies, with a tab character, or may appear on the same line, with a semicolon. Either

way, the e�ect is the same. See Chapter 5 [Writing the Commands in Rules], page 41.

Because dollar signs are used to start variable references, if you really want a dollar sign in a

rule you must write two of them, `$$' (see Chapter 6 [How to Use Variables], page 55). You may

split a long line by inserting a backslash followed by a newline, but this is not required, as make

places no limit on the length of a line in a make�le.

A rule tells make two things: when the targets are out of date, and how to update them when

necessary.

The criterion for being out of date is speci�ed in terms of the dependencies, which consist of �le

names separated by spaces. (Wildcards and archive members (see Chapter 11 [Archives], page 121)

are allowed here too.) A target is out of date if it does not exist or if it is older than any of the

dependencies (by comparison of last-modi�cation times). The idea is that the contents of the target

�le are computed based on information in the dependencies, so if any of the dependencies changes,

the contents of the existing target �le are no longer necessarily valid.

How to update is speci�ed by commands. These are lines to be executed by the shell (normally

`sh'), but with some extra features (see Chapter 5 [Writing the Commands in Rules], page 41).

4.2 Using Wildcard Characters in File Names

A single �le name can specify many �les using wildcard characters. The wildcard characters in

make are `*', `?' and `[: : :]', the same as in the Bourne shell. For example, `*.c' speci�es a list of

all the �les (in the working directory) whose names end in `.c'.

The character `~' at the beginning of a �le name also has special signi�cance. If alone, or followed

by a slash, it represents your home directory. For example `~/bin' expands to `/home/you/bin'. If

the `~' is followed by a word, the string represents the home directory of the user named by that

word. For example `~john/bin' expands to `/home/john/bin'.

Wildcard expansion happens automatically in targets, in dependencies, and in commands (where

the shell does the expansion). In other contexts, wildcard expansion happens only if you request it

explicitly with the wildcard function.

Chapter 4: Writing Rules 21

rm (shell comm
print target
lpr (shell comm
touch (shell com
wildcard pitfall
pitfalls of wildc
mistakes with w
errors with wild
problems with w

The special signi�cance of a wildcard character can be turned o� by preceding it with a backslash.

Thus, `foo*bar' would refer to a speci�c �le whose name consists of `foo', an asterisk, and `bar'.

4.2.1 Wildcard Examples

Wildcards can be used in the commands of a rule, where they are expanded by the shell. For

example, here is a rule to delete all the object �les:

clean:

rm -f *.o

Wildcards are also useful in the dependencies of a rule. With the following rule in the make�le,

`make print' will print all the `.c' �les that have changed since the last time you printed them:

print: *.c

lpr -p $?

touch print

This rule uses `print' as an empty target �le; see Section 4.6 [Empty Target Files to Record

Events], page 30. (The automatic variable `$?' is used to print only those �les that have changed;

see Section 10.5.3 [Automatic Variables], page 112.)

Wildcard expansion does not happen when you de�ne a variable. Thus, if you write this:

objects = *.o

then the value of the variable objects is the actual string `*.o'. However, if you use the value of

objects in a target, dependency or command, wildcard expansion will take place at that time. To

set objects to the expansion, instead use:

objects := $(wildcard *.o)

See Section 4.2.3 [Wildcard Function], page 22.

4.2.2 Pitfalls of Using Wildcards

22 GNU make

wildcard

Now here is an example of a naive way of using wildcard expansion, that does not do what you

would intend. Suppose you would like to say that the executable �le `foo' is made from all the

object �les in the directory, and you write this:

objects = *.o

foo : $(objects)

cc -o foo $(CFLAGS) $(objects)

The value of objects is the actual string `*.o'. Wildcard expansion happens in the rule for `foo',

so that each existing `.o' �le becomes a dependency of `foo' and will be recompiled if necessary.

But what if you delete all the `.o' �les? When a wildcard matches no �les, it is left as it is, so

then `foo' will depend on the oddly-named �le `*.o'. Since no such �le is likely to exist, make will

give you an error saying it cannot �gure out how to make `*.o'. This is not what you want!

Actually it is possible to obtain the desired result with wildcard expansion, but you need more

sophisticated techniques, including the wildcard function and string substitution. These are de-

scribed in the following section.

4.2.3 The Function wildcard

Wildcard expansion happens automatically in rules. But wildcard expansion does not normally

take place when a variable is set, or inside the arguments of a function. If you want to do wildcard

expansion in such places, you need to use the wildcard function, like this:

$(wildcard pattern: : :)

This string, used anywhere in a make�le, is replaced by a space-separated list of names of existing

�les that match one of the given �le name patterns. If no existing �le name matches a pattern,

then that pattern is omitted from the output of the wildcard function. Note that this is di�erent

from how unmatched wildcards behave in rules, where they are used verbatim rather than ignored

(see Section 4.2.2 [Wildcard Pitfall], page 21).

One use of the wildcard function is to get a list of all the C source �les in a directory, like this:

$(wildcard *.c)

Chapter 4: Writing Rules 23

VPATH
vpath
vpath
search path for
directory search
VPATH

We can change the list of C source �les into a list of object �les by replacing the `.o' su�x with

`.c' in the result, like this:

$(patsubst %.c,%.o,$(wildcard *.c))

(Here we have used another function, patsubst. See Section 8.2 [Functions for String Substitution

and Analysis], page 78.)

Thus, a make�le to compile all C source �les in the directory and then link them together could

be written as follows:

objects := $(patsubst %.c,%.o,$(wildcard *.c))

foo : $(objects)

cc -o foo $(objects)

(This takes advantage of the implicit rule for compiling C programs, so there is no need to write

explicit rules for compiling the �les. See Section 6.2 [The Two Flavors of Variables], page 56, for

an explanation of `:=', which is a variant of `='.)

4.3 Searching Directories for Dependencies

For large systems, it is often desirable to put sources in a separate directory from the binaries.

The directory search features of make facilitate this by searching several directories automatically

to �nd a dependency. When you redistribute the �les among directories, you do not need to change

the individual rules, just the search paths.

4.3.1 VPATH: Search Path for All Dependencies

The value of the make variable VPATH speci�es a list of directories that make should search. Most

often, the directories are expected to contain dependency �les that are not in the current directory;

however, VPATH speci�es a search list that make applies for all �les, including �les which are targets

of rules.

Thus, if a �le that is listed as a target or dependency does not exist in the current directory,

make searches the directories listed in VPATH for a �le with that name. If a �le is found in one

of them, that �le becomes the dependency. Rules may then specify the names of source �les in

24 GNU make

vpath

the dependencies as if they all existed in the current directory. See Section 4.3.3 [Writing Shell

Commands with Directory Search], page 26.

In the VPATH variable, directory names are separated by colons or blanks. The order in which

directories are listed is the order followed by make in its search.

For example,

VPATH = src:../headers

speci�es a path containing two directories, `src' and `../headers', which make searches in that

order.

With this value of VPATH, the following rule,

foo.o : foo.c

is interpreted as if it were written like this:

foo.o : src/foo.c

assuming the �le `foo.c' does not exist in the current directory but is found in the directory `src'.

4.3.2 The vpath Directive

Similar to the VPATH variable but more selective is the vpath directive (note lower case), which

allows you to specify a search path for a particular class of �le names, those that match a particular

pattern. Thus you can supply certain search directories for one class of �le names and other

directories (or none) for other �le names.

There are three forms of the vpath directive:

vpath pattern directories

Specify the search path directories for �le names that match pattern.

The search path, directories, is a list of directories to be searched, separated by colons

or blanks, just like the search path used in the VPATH variable.

Chapter 4: Writing Rules 25

%, quoting in vp
%, quoting with
\ (backslash), t
backslash (\), t
quoting %, in vp

vpath pattern

Clear out the search path associated with pattern.

vpath

Clear all search paths previously speci�ed with vpath directives.

A vpath pattern is a string containing a `%' character. The string must match the �le name of

a dependency that is being searched for, the `%' character matching any sequence of zero or more

characters (as in pattern rules; see Section 10.5 [De�ning and Rede�ning Pattern Rules], page 109).

For example, %.h matches �les that end in .h. (If there is no `%', the pattern must match the

dependency exactly, which is not useful very often.)

`%' characters in a vpath directive's pattern can be quoted with preceding backslashes (`\').

Backslashes that would otherwise quote `%' characters can be quoted with more backslashes. Back-

slashes that quote `%' characters or other backslashes are removed from the pattern before it is

compared to �le names. Backslashes that are not in danger of quoting `%' characters go unmo-

lested.

When a dependency fails to exist in the current directory, if the pattern in a vpath directive

matches the name of the dependency �le, then the directories in that directive are searched just

like (and before) the directories in the VPATH variable.

For example,

vpath %.h ../headers

tells make to look for any dependency whose name ends in `.h' in the directory `../headers' if the

�le is not found in the current directory.

If several vpath patterns match the dependency �le's name, then make processes each matching

vpath directive one by one, searching all the directories mentioned in each directive. make handles

multiple vpath directives in the order in which they appear in the make�le; multiple directives with

the same pattern are independent of each other.

Thus,

vpath %.c foo

vpath % blish

vpath %.c bar

26 GNU make

shell command,
directory search
VPATH, and imp
directory search
search path for
implicit rule, an
implicit rule, an
rule, implicit, a
rule, implicit, a

will look for a �le ending in `.c' in `foo', then `blish', then `bar', while

vpath %.c foo:bar

vpath % blish

will look for a �le ending in `.c' in `foo', then `bar', then `blish'.

4.3.3 Writing Shell Commands with Directory Search

When a dependency is found in another directory through directory search, this cannot change

the commands of the rule; they will execute as written. Therefore, you must write the commands

with care so that they will look for the dependency in the directory where make �nds it.

This is done with the automatic variables such as `$^' (see Section 10.5.3 [Automatic Variables],

page 112). For instance, the value of `$^' is a list of all the dependencies of the rule, including the

names of the directories in which they were found, and the value of `$@' is the target. Thus:

foo.o : foo.c

cc -c $(CFLAGS) $^ -o $@

(The variable CFLAGS exists so you can specify ags for C compilation by implicit rules; we use it

here for consistency so it will a�ect all C compilations uniformly; see Section 10.3 [Variables Used

by Implicit Rules], page 106.)

Often the dependencies include header �les as well, which you do not want to mention in the

commands. The automatic variable `$<' is just the �rst dependency:

VPATH = src:../headers

foo.o : foo.c defs.h hack.h

cc -c $(CFLAGS) $< -o $@

4.3.4 Directory Search and Implicit Rules

The search through the directories speci�ed in VPATH or with vpath also happens during con-

sideration of implicit rules (see Chapter 10 [Using Implicit Rules], page 101).

For example, when a �le `foo.o' has no explicit rule, make considers implicit rules, such as the

built-in rule to compile `foo.c' if that �le exists. If such a �le is lacking in the current directory,

Chapter 4: Writing Rules 27

link libraries, an
libraries for link
directory search
VPATH, and link
search path for
-l (library sear
phony targets
targets, phony
targets without

the appropriate directories are searched for it. If `foo.c' exists (or is mentioned in the make�le) in

any of the directories, the implicit rule for C compilation is applied.

The commands of implicit rules normally use automatic variables as a matter of necessity;

consequently they will use the �le names found by directory search with no extra e�ort.

4.3.5 Directory Search for Link Libraries

Directory search applies in a special way to libraries used with the linker. This special feature

comes into play when you write a dependency whose name is of the form `-lname'. (You can tell

something strange is going on here because the dependency is normally the name of a �le, and the

�le name of the library looks like `libname.a', not like `-lname'.)

When a dependency's name has the form `-lname', make handles it specially by searching for

the �le `libname.a' in the current directory, in directories speci�ed by matching vpath search

paths and the VPATH search path, and then in the directories `/lib', `/usr/lib', and `pre�x/lib'

(normally `/usr/local/lib').

For example,

foo : foo.c -lcurses

cc $^ -o $@

would cause the command `cc foo.c /usr/lib/libcurses.a -o foo' to be executed when `foo'

is older than `foo.c' or than `/usr/lib/libcurses.a'.

4.4 Phony Targets

A phony target is one that is not really the name of a �le. It is just a name for some commands

to be executed when you make an explicit request. There are two reasons to use a phony target:

to avoid a conict with a �le of the same name, and to improve performance.

If you write a rule whose commands will not create the target �le, the commands will be executed

every time the target comes up for remaking. Here is an example:

clean:

rm *.o temp

28 GNU make

rm (shell comm
.PHONY

Because the rm command does not create a �le named `clean', probably no such �le will ever exist.

Therefore, the rm command will be executed every time you say `make clean'.

The phony target will cease to work if anything ever does create a �le named `clean' in this

directory. Since it has no dependencies, the �le `clean' would inevitably be considered up to date,

and its commands would not be executed. To avoid this problem, you can explicitly declare the

target to be phony, using the special target .PHONY (see Section 4.7 [Special Built-in Target Names],

page 30) as follows:

.PHONY : clean

Once this is done, `make clean' will run the commands regardless of whether there is a �le named

`clean'.

Since it knows that phony targets do not name actual �les that could be remade from other �les,

make skips the implicit rule search for phony targets (see Chapter 10 [Implicit Rules], page 101).

This is why declaring a target phony is good for performance, even if you are not worried about

the actual �le existing.

Thus, you �rst write the line that states that clean is a phony target, then you write the rule,

like this:

.PHONY: clean

clean:

rm *.o temp

A phony target should not be a dependency of a real target �le; if it is, its commands are run

every time make goes to update that �le. As long as a phony target is never a dependency of a real

target, the phony target commands will be executed only when the phony target is a speci�ed goal

(see Section 9.2 [Arguments to Specify the Goals], page 89).

Phony targets can have dependencies. When one directory contains multiple programs, it is

most convenient to describe all of the programs in one make�le `./Makefile'. Since the target

remade by default will be the �rst one in the make�le, it is common to make this a phony target

named `all' and give it, as dependencies, all the individual programs. For example:

all : prog1 prog2 prog3

.PHONY : all

prog1 : prog1.o utils.o

Chapter 4: Writing Rules 29

force targets
targets, force
FORCE
rule, no commacc -o prog1 prog1.o utils.o

prog2 : prog2.o

cc -o prog2 prog2.o

prog3 : prog3.o sort.o utils.o

cc -o prog3 prog3.o sort.o utils.o

Now you can say just `make' to remake all three programs, or specify as arguments the ones to

remake (as in `make prog1 prog3').

When one phony target is a dependency of another, it serves as a subroutine of the other. For

example, here `make cleanall' will delete the object �les, the di�erence �les, and the �le `program':

.PHONY: cleanall cleanobj cleandiff

cleanall : cleanobj cleandiff

rm program

cleanobj :

rm *.o

cleandiff :

rm *.diff

4.5 Rules without Commands or Dependencies

If a rule has no dependencies or commands, and the target of the rule is a nonexistent �le, then

make imagines this target to have been updated whenever its rule is run. This implies that all

targets depending on this one will always have their commands run.

An example will illustrate this:

clean: FORCE

rm $(objects)

FORCE:

Here the target `FORCE' satis�es the special conditions, so the target `clean' that depends on it

is forced to run its commands. There is nothing special about the name `FORCE', but that is one

name commonly used this way.

30 GNU make

empty targets
targets, empty
recording event
print target
lpr (shell comm
touch (shell com
special targets
built-in special
targets, built-in
.PHONY
.SUFFIXES

As you can see, using `FORCE' this way has the same results as using `.PHONY: clean'.

Using `.PHONY' is more explicit and more e�cient. However, other versions of make do not

support `.PHONY'; thus `FORCE' appears in many make�les. See Section 4.4 [Phony Targets], page 27.

4.6 Empty Target Files to Record Events

The empty target is a variant of the phony target; it is used to hold commands for an action

that you request explicitly from time to time. Unlike a phony target, this target �le can really

exist; but the �le's contents do not matter, and usually are empty.

The purpose of the empty target �le is to record, with its last-modi�cation time, when the rule's

commands were last executed. It does so because one of the commands is a touch command to

update the target �le.

The empty target �le must have some dependencies. When you ask to remake the empty target,

the commands are executed if any dependency is more recent than the target; in other words, if a

dependency has changed since the last time you remade the target. Here is an example:

print: foo.c bar.c

lpr -p $?

touch print

With this rule, `make print' will execute the lpr command if either source �le has changed since

the last `make print'. The automatic variable `$?' is used to print only those �les that have changed

(see Section 10.5.3 [Automatic Variables], page 112).

4.7 Special Built-in Target Names

Certain names have special meanings if they appear as targets.

.PHONY

The dependencies of the special target .PHONY are considered to be phony targets.

When it is time to consider such a target, make will run its commands unconditionally,

regardless of whether a �le with that name exists or what its last-modi�cation time is.

See Section 4.4 [Phony Targets], page 27.

Chapter 4: Writing Rules 31

.DEFAULT

.PRECIOUS
precious targets
preserving with
.IGNORE
.SILENT
.EXPORT_ALL_V

.SUFFIXES

The dependencies of the special target .SUFFIXES are the list of su�xes to be used in

checking for su�x rules. See Section 10.7 [Old-Fashioned Su�x Rules], page 117.

.DEFAULT

The commands speci�ed for .DEFAULT are used for any target for which no rules are

found (either explicit rules or implicit rules). See Section 10.6 [Last Resort], page 116.

If .DEFAULT commands are speci�ed, every �le mentioned as a dependency, but not as

a target in a rule, will have these commands executed on its behalf. See Section 10.8

[Implicit Rule Search Algorithm], page 119.

.PRECIOUS

The targets which .PRECIOUS depends on are given the following special treatment: if

make is killed or interrupted during the execution of their commands, the target is not

deleted. See Section 5.5 [Interrupting or Killing make], page 45. Also, if the target is

an intermediate �le, it will not be deleted after it is no longer needed, as is normally

done. See Section 10.4 [Chains of Implicit Rules], page 108.

You can also list the target pattern of an implicit rule (such as `%.o') as a dependency

�le of the special target .PRECIOUS to preserve intermediate �les created by rules whose

target patterns match that �le's name.

.IGNORE

If you specify dependencies for .IGNORE, then make will ignore errors in execution

of the commands run for those particular �les. The commands for .IGNORE are not

meaningful.

If mentioned as a target with no dependencies, .IGNORE says to ignore errors in execu-

tion of commands for all �les. This usage of `.IGNORE' is supported only for historical

compatibility. Since this a�ects every command in the make�le, it is not very useful;

we recommend you use the more selective ways to ignore errors in speci�c commands.

See Section 5.4 [Errors in Commands], page 44.

.SILENT

If you specify dependencies for .SILENT, then make will not the print commands to

remake those particular �les before executing them. The commands for .SILENT are

not meaningful.

If mentioned as a target with no dependencies, .SILENT says not to print any commands

before executing them. This usage of `.SILENT' is supported only for historical compat-

ibility. We recommend you use the more selective ways to silence speci�c commands.

See Section 5.1 [Command Echoing], page 41. If you want to silence all commands for

a particular run of make, use the `-s' or `--silent' option (see Section 9.7 [Options

Summary], page 95).

32 GNU make

multiple targets
several targets i
targets, multipl
rule, with multi
subst

.EXPORT_ALL_VARIABLES

Simply by being mentioned as a target, this tells make to export all variables to child

processes by default. See Section 5.6.2 [Communicating Variables to a Sub-make],

page 47.

Any de�ned implicit rule su�x also counts as a special target if it appears as a target, and so

does the concatenation of two su�xes, such as `.c.o'. These targets are su�x rules, an obsolete

way of de�ning implicit rules (but a way still widely used). In principle, any target name could

be special in this way if you break it in two and add both pieces to the su�x list. In practice,

su�xes normally begin with `.', so these special target names also begin with `.'. See Section 10.7

[Old-Fashioned Su�x Rules], page 117.

4.8 Multiple Targets in a Rule

A rule with multiple targets is equivalent to writing many rules, each with one target, and

all identical aside from that. The same commands apply to all the targets, but their e�ects may

vary because you can substitute the actual target name into the command using `$@'. The rule

contributes the same dependencies to all the targets also.

This is useful in two cases.

� You want just dependencies, no commands. For example:

kbd.o command.o files.o: command.h

gives an additional dependency to each of the three object �les mentioned.

� Similar commands work for all the targets. The commands do not need to be absolutely

identical, since the automatic variable `$@' can be used to substitute the particular target

to be remade into the commands (see Section 10.5.3 [Automatic Variables], page 112). For

example:

bigoutput littleoutput : text.g

generate text.g -$(subst output,,$@) > $@

is equivalent to

bigoutput : text.g

generate text.g -big > bigoutput

littleoutput : text.g

generate text.g -little > littleoutput

Here we assume the hypothetical program generate makes two types of output, one if given

`-big' and one if given `-little'. See Section 8.2 [Functions for String Substitution and

Analysis], page 78, for an explanation of the subst function.

Chapter 4: Writing Rules 33

multiple rules fo
several rules for
rule, multiple fo
target, multipleSuppose you would like to vary the dependencies according to the target, much as the variable

`$@' allows you to vary the commands. You cannot do this with multiple targets in an ordinary

rule, but you can do it with a static pattern rule. See Section 4.10 [Static Pattern Rules], page 34.

4.9 Multiple Rules for One Target

One �le can be the target of several rules. All the dependencies mentioned in all the rules are

merged into one list of dependencies for the target. If the target is older than any dependency from

any rule, the commands are executed.

There can only be one set of commands to be executed for a �le. If more than one rule gives

commands for the same �le, make uses the last set given and prints an error message. (As a special

case, if the �le's name begins with a dot, no error message is printed. This odd behavior is only

for compatibility with other implementations of make.) There is no reason to write your make�les

this way; that is why make gives you an error message.

An extra rule with just dependencies can be used to give a few extra dependencies to many �les

at once. For example, one usually has a variable named objects containing a list of all the compiler

output �les in the system being made. An easy way to say that all of them must be recompiled if

`config.h' changes is to write the following:

objects = foo.o bar.o

foo.o : defs.h

bar.o : defs.h test.h

$(objects) : config.h

This could be inserted or taken out without changing the rules that really specify how to make

the object �les, making it a convenient form to use if you wish to add the additional dependency

intermittently.

Another wrinkle is that the additional dependencies could be speci�ed with a variable that

you set with a command argument to make (see Section 9.5 [Overriding Variables], page 94). For

example,

extradeps=

$(objects) : $(extradeps)

means that the command `make extradeps=foo.h' will consider `foo.h' as a dependency of each

object �le, but plain `make' will not.

34 GNU make

static pattern r
rule, static patt
pattern rules, st
varying depend
dependencies, v
static pattern r
pattern rules, st
target pattern,
stem
dependency pat
%, quoting in st
%, quoting with
\ (backslash), t
backslash (\), t
quoting %, in st

If none of the explicit rules for a target has commands, then make searches for an applicable

implicit rule to �nd some commands see Chapter 10 [Using Implicit Rules], page 101).

4.10 Static Pattern Rules

Static pattern rules are rules which specify multiple targets and construct the dependency names

for each target based on the target name. They are more general than ordinary rules with multiple

targets because the targets do not have to have identical dependencies. Their dependencies must

be analogous, but not necessarily identical.

4.10.1 Syntax of Static Pattern Rules

Here is the syntax of a static pattern rule:

targets : : :: target-pattern: dep-patterns : : :

commands
: : :

The targets list speci�es the targets that the rule applies to. The targets can contain wildcard

characters, just like the targets of ordinary rules (see Section 4.2 [Using Wildcard Characters in

File Names], page 20).

The target-pattern and dep-patterns say how to compute the dependencies of each target. Each

target is matched against the target-pattern to extract a part of the target name, called the stem.

This stem is substituted into each of the dep-patterns to make the dependency names (one from

each dep-pattern).

Each pattern normally contains the character `%' just once. When the target-pattern matches

a target, the `%' can match any part of the target name; this part is called the stem. The rest of

the pattern must match exactly. For example, the target `foo.o' matches the pattern `%.o', with

`foo' as the stem. The targets `foo.c' and `foo.out' do not match that pattern.

The dependency names for each target are made by substituting the stem for the `%' in each

dependency pattern. For example, if one dependency pattern is `%.c', then substitution of the stem

`foo' gives the dependency name `foo.c'. It is legitimate to write a dependency pattern that does

not contain `%'; then this dependency is the same for all targets.

Chapter 4: Writing Rules 35

$*, and static p

`%' characters in pattern rules can be quoted with preceding backslashes (`\'). Backslashes that

would otherwise quote `%' characters can be quoted with more backslashes. Backslashes that quote

`%' characters or other backslashes are removed from the pattern before it is compared to �le names

or has a stem substituted into it. Backslashes that are not in danger of quoting `%' characters

go unmolested. For example, the pattern `the\%weird\\%pattern\\' has `the%weird\' preceding

the operative `%' character, and `pattern\\' following it. The �nal two backslashes are left alone

because they cannot a�ect any `%' character.

Here is an example, which compiles each of `foo.o' and `bar.o' from the corresponding `.c' �le:

objects = foo.o bar.o

$(objects): %.o: %.c

$(CC) -c $(CFLAGS) $< -o $@

Here `$<' is the automatic variable that holds the name of the dependency and `$@' is the automatic

variable that holds the name of the target; see Section 10.5.3 [Automatic Variables], page 112.

Each target speci�ed must match the target pattern; a warning is issued for each target that does

not. If you have a list of �les, only some of which will match the pattern, you can use the filter

function to remove nonmatching �le names (see Section 8.2 [Functions for String Substitution and

Analysis], page 78):

files = foo.elc bar.o lose.o

$(filter %.o,$(files)): %.o: %.c

$(CC) -c $(CFLAGS) $< -o $@

$(filter %.elc,$(files)): %.elc: %.el

emacs -f batch-byte-compile $<

In this example the result of `$(filter %.o,$(files))' is `bar.o lose.o', and the �rst static

pattern rule causes each of these object �les to be updated by compiling the corresponding C

source �le. The result of `$(filter %.elc,$(files))' is `foo.elc', so that �le is made from

`foo.el'.

Another example shows how to use $* in static pattern rules:

bigoutput littleoutput : %output : text.g

generate text.g -$* > $@

When the generate command is run, $* will expand to the stem, either `big' or `little'.

36 GNU make

rule, static patt
static pattern r
double-colon ru
rule, double-col
multiple rules fo
:: rules (double

4.10.2 Static Pattern Rules versus Implicit Rules

A static pattern rule has much in common with an implicit rule de�ned as a pattern rule (see

Section 10.5 [De�ning and Rede�ning Pattern Rules], page 109). Both have a pattern for the target

and patterns for constructing the names of dependencies. The di�erence is in how make decides

when the rule applies.

An implicit rule can apply to any target that matches its pattern, but it does apply only when

the target has no commands otherwise speci�ed, and only when the dependencies can be found. If

more than one implicit rule appears applicable, only one applies; the choice depends on the order

of rules.

By contrast, a static pattern rule applies to the precise list of targets that you specify in the rule.

It cannot apply to any other target and it invariably does apply to each of the targets speci�ed. If

two conicting rules apply, and both have commands, that's an error.

The static pattern rule can be better than an implicit rule for these reasons:

� You may wish to override the usual implicit rule for a few �les whose names cannot be cate-

gorized syntactically but can be given in an explicit list.

� If you cannot be sure of the precise contents of the directories you are using, you may not be

sure which other irrelevant �les might lead make to use the wrong implicit rule. The choice

might depend on the order in which the implicit rule search is done. With static pattern rules,

there is no uncertainty: each rule applies to precisely the targets speci�ed.

4.11 Double-Colon Rules

Double-colon rules are rules written with `::' instead of `:' after the target names. They are

handled di�erently from ordinary rules when the same target appears in more than one rule.

When a target appears in multiple rules, all the rules must be the same type: all ordinary, or

all double-colon. If they are double-colon, each of them is independent of the others. Each double-

colon rule's commands are executed if the target is older than any dependencies of that rule. This

can result in executing none, any, or all of the double-colon rules.

Double-colon rules with the same target are in fact completely separate from one another. Each

double-colon rule is processed individually, just as rules with di�erent targets are processed.

Chapter 4: Writing Rules 37

dependencies, a
automatic gener
generating depe
#include
-M (to compiler

The double-colon rules for a target are executed in the order they appear in the make�le.

However, the cases where double-colon rules really make sense are those where the order of executing

the commands would not matter.

Double-colon rules are somewhat obscure and not often very useful; they provide a mechanism

for cases in which the method used to update a target di�ers depending on which dependency �les

caused the update, and such cases are rare.

Each double-colon rule should specify commands; if it does not, an implicit rule will be used if

one applies. See Chapter 10 [Using Implicit Rules], page 101.

4.12 Generating Dependencies Automatically

In the make�le for a program, many of the rules you need to write often say only that some

object �le depends on some header �le. For example, if `main.c' uses `defs.h' via an #include,

you would write:

main.o: defs.h

You need this rule so that make knows that it must remake `main.o' whenever `defs.h' changes.

You can see that for a large program you would have to write dozens of such rules in your make�le.

And, you must always be very careful to update the make�le every time you add or remove an

#include.

To avoid this hassle, most modern C compilers can write these rules for you, by looking at the

#include lines in the source �les. Usually this is done with the `-M' option to the compiler. For

example, the command:

cc -M main.c

generates the output:

main.o : main.c defs.h

Thus you no longer have to write all those rules yourself. The compiler will do it for you.

38 GNU make

make depend
-e (shell ag)
-MM (to GNU co
sed (shell commNote that such a dependency constitutes mentioning `main.o' in a make�le, so it can never be

considered an intermediate �le by implicit rule search. This means that make won't ever remove

the �le after using it; see Section 10.4 [Chains of Implicit Rules], page 108.

With old make programs, it was traditional practice to use this compiler feature to generate

dependencies on demand with a command like `make depend'. That command would create a

�le `depend' containing all the automatically-generated dependencies; then the make�le could use

include to read them in (see Section 3.3 [Include], page 14).

In GNU make, the feature of remaking make�les makes this practice obsolete|you need never

tell make explicitly to regenerate the dependencies, because it always regenerates any make�le that

is out of date. See Section 3.5 [Remaking Make�les], page 16.

The practice we recommend for automatic dependency generation is to have one make�le corre-

sponding to each source �le. For each source �le `name.c' there is a make�le `name.d' which lists

what �les the object �le `name.o' depends on. That way only the source �les that have changed

need to be rescanned to produce the new dependencies.

Here is the pattern rule to generate a �le of dependencies (i.e., a make�le) called `name.d' from

a C source �le called `name.c':

%.d: %.c

$(SHELL) -ec '$(CC) -M $(CPPFLAGS) $< \

| sed '\''s/$*\\.o[:]*/& $@/g'\'' > $@'

See Section 10.5 [Pattern Rules], page 109, for information on de�ning pattern rules. The `-e' ag

to the shell makes it exit immediately if the $(CC) command fails (exits with a nonzero status).

Normally the shell exits with the status of the last command in the pipeline (sed in this case), so

make would not notice a nonzero status from the compiler.

With the GNU C compiler, you may wish to use the `-MM' ag instead of `-M'. This omits

dependencies on system header �les. See section \Options Controlling the Preprocessor" in Using

GNU CC , for details.

The purpose of the sed command is to translate (for example):

main.o : main.c defs.h

into:

Chapter 4: Writing Rules 39

.d

main.o main.d : main.c defs.h

This makes each `.d' �le depend on all the source and header �les that the corresponding `.o' �le

depends on. make then knows it must regenerate the dependencies whenever any of the source or

header �les changes.

Once you've de�ned the rule to remake the `.d' �les, you then use the include directive to read

them all in. See Section 3.3 [Include], page 14. For example:

sources = foo.c bar.c

include $(sources:.c=.d)

(This example uses a substitution variable reference to translate the list of source �les `foo.c bar.c'

into a list of dependency make�les, `foo.d bar.d'. See Section 6.3.1 [Substitution Refs], page 59,

for full information on substitution references.) Since the `.d' �les are make�les like any others,

make will remake them as necessary with no further work from you. See Section 3.5 [Remaking

Make�les], page 16.

40 GNU make

Chapter 5: Writing the Commands in Rules 41

commands, how
rule commands
writing rule com
comments, in co
commands, com
(comments), i
echoing of comm
silent operation
@ (in commands
commands, echo
printing of com
-n
--just-print
--dry-run
--recon
-s
--silent
--quiet
.SILENT

5 Writing theCommands in Rules

The commands of a rule consist of shell command lines to be executed one by one. Each

command line must start with a tab, except that the �rst command line may be attached to the

target-and-dependencies line with a semicolon in between. Blank lines and lines of just comments

may appear among the command lines; they are ignored. (But beware, an apparently \blank" line

that begins with a tab is not blank! It is an empty command; see Section 5.8 [Empty Commands],

page 54.)

Users use many di�erent shell programs, but commands in make�les are always interpreted by

`/bin/sh' unless the make�le speci�es otherwise. See Section 5.2 [Command Execution], page 42.

The shell that is in use determines whether comments can be written on command lines, and

what syntax they use. When the shell is `/bin/sh', a `#' starts a comment that extends to the end

of the line. The `#' does not have to be at the beginning of a line. Text on a line before a `#' is not

part of the comment.

5.1 Command Echoing

Normally make prints each command line before it is executed. We call this echoing because it

gives the appearance that you are typing the commands yourself.

When a line starts with `@', the echoing of that line is suppressed. The `@' is discarded before

the command is passed to the shell. Typically you would use this for a command whose only e�ect

is to print something, such as an echo command to indicate progress through the make�le:

@echo About to make distribution files

When make is given the ag `-n' or `--just-print', echoing is all that happens, no execution.

See Section 9.7 [Summary of Options], page 95. In this case and only this case, even the commands

starting with `@' are printed. This ag is useful for �nding out which commands make thinks are

necessary without actually doing them.

The `-s' or `--silent' ag to make prevents all echoing, as if all commands started with `@'. A

rule in the make�le for the special target .SILENT without dependencies has the same e�ect (see

Section 4.7 [Special Built-in Target Names], page 30). .SILENT is essentially obsolete since `@' is

more exible.

42 GNU make

commands, exec
execution, of co
shell command,
SHELL (comman
cd (shell comm
commands, bac
commands, quo
backslash (\), in
\ (backslash), in
quoting newline
newline, quotin
SHELL
environment, SH
commands, exec
parallel executio
execution, in pa
job slots
-j
--jobs

5.2 Command Execution

When it is time to execute commands to update a target, they are executed by making a new

subshell for each line. (In practice, make may take shortcuts that do not a�ect the results.)

Please note: this implies that shell commands such as cd that set variables local to each process

will not a�ect the following command lines. If you want to use cd to a�ect the next command, put

the two on a single line with a semicolon between them. Then make will consider them a single

command and pass them, together, to a shell which will execute them in sequence. For example:

foo : bar/lose

cd bar; gobble lose > ../foo

If you would like to split a single shell command into multiple lines of text, you must use a

backslash at the end of all but the last subline. Such a sequence of lines is combined into a single

line, by deleting the backslash-newline sequences, before passing it to the shell. Thus, the following

is equivalent to the preceding example:

foo : bar/lose

cd bar; \

gobble lose > ../foo

The program used as the shell is taken from the variable SHELL. By default, the program

`/bin/sh' is used.

Unlike most variables, the variable SHELL is never set from the environment. This is because the

SHELL environment variable is used to specify your personal choice of shell program for interactive

use. It would be very bad for personal choices like this to a�ect the functioning of make�les. See

Section 6.9 [Variables from the Environment], page 68.

5.3 Parallel Execution

GNU make knows how to execute several commands at once. Normally, make will execute only

one command at a time, waiting for it to �nish before executing the next. However, the `-j' or

`--jobs' option tells make to execute many commands simultaneously.

If the `-j' option is followed by an integer, this is the number of commands to execute at once;

this is called the number of job slots. If there is nothing looking like an integer after the `-j' option,

Chapter 5: Writing the Commands in Rules 43

broken pipe
standard input
load average
limiting jobs ba
jobs, limiting ba
-l (load averag
--max-load
--load-averag

there is no limit on the number of job slots. The default number of job slots is one, which means

serial execution (one thing at a time).

One unpleasant consequence of running several commands simultaneously is that output from

all of the commands comes when the commands send it, so messages from di�erent commands may

be interspersed.

Another problem is that two processes cannot both take input from the same device; so to make

sure that only one command tries to take input from the terminal at once, make will invalidate

the standard input streams of all but one running command. This means that attempting to read

from standard input will usually be a fatal error (a `Broken pipe' signal) for most child processes

if there are several.

It is unpredictable which command will have a valid standard input stream (which will come

from the terminal, or wherever you redirect the standard input of make). The �rst command run

will always get it �rst, and the �rst command started after that one �nishes will get it next, and

so on.

We will change how this aspect of make works if we �nd a better alternative. In the mean

time, you should not rely on any command using standard input at all if you are using the parallel

execution feature; but if you are not using this feature, then standard input works normally in all

commands.

If a command fails (is killed by a signal or exits with a nonzero status), and errors are not ignored

for that command (see Section 5.4 [Errors in Commands], page 44), the remaining command lines

to remake the same target will not be run. If a command fails and the `-k' or `--keep-going'

option was not given (see Section 9.7 [Summary of Options], page 95), make aborts execution. If

make terminates for any reason (including a signal) with child processes running, it waits for them

to �nish before actually exiting.

When the system is heavily loaded, you will probably want to run fewer jobs than when it is

lightly loaded. You can use the `-l' option to tell make to limit the number of jobs to run at once,

based on the load average. The `-l' or `--max-load' option is followed by a oating-point number.

For example,

-l 2.5

will not let make start more than one job if the load average is above 2.5. The `-l' option with no

following number removes the load limit, if one was given with a previous `-l' option.

44 GNU make

errors (in comm
commands, erro
exit status (erro
- (in commands
rm (shell comm
-i
--ignore-erro
.IGNORE

More precisely, when make goes to start up a job, and it already has at least one job running,

it checks the current load average; if it is not lower than the limit given with `-l', make waits until

the load average goes below that limit, or until all the other jobs �nish.

By default, there is no load limit.

5.4 Errors in Commands

After each shell command returns, make looks at its exit status. If the command completed

successfully, the next command line is executed in a new shell; after the last command line is

�nished, the rule is �nished.

If there is an error (the exit status is nonzero), make gives up on the current rule, and perhaps

on all rules.

Sometimes the failure of a certain command does not indicate a problem. For example, you may

use the mkdir command to ensure that a directory exists. If the directory already exists, mkdir

will report an error, but you probably want make to continue regardless.

To ignore errors in a command line, write a `-' at the beginning of the line's text (after the

initial tab). The `-' is discarded before the command is passed to the shell for execution.

For example,

clean:

-rm -f *.o

This causes rm to continue even if it is unable to remove a �le.

When you run make with the `-i' or `--ignore-errors' ag, errors are ignored in all commands

of all rules. A rule in the make�le for the special target .IGNORE has the same e�ect, if there are

no dependencies. These ways of ignoring errors are obsolete because `-' is more exible.

When errors are to be ignored, because of either a `-' or the `-i' ag, make treats an error return

just like success, except that it prints out a message that tells you the status code the command

exited with, and says that the error has been ignored.

Chapter 5: Writing the Commands in Rules 45

-k
--keep-going
Emacs (M-x com
.DELETE_ON_ER
deletion of targ
removal of targe
target, deleting
interrupt
signal
deletion of targ
removal of targe
target, deleting
killing (interrup

When an error happens that make has not been told to ignore, it implies that the current

target cannot be correctly remade, and neither can any other that depends on it either directly or

indirectly. No further commands will be executed for these targets, since their preconditions have

not been achieved.

Normally make gives up immediately in this circumstance, returning a nonzero status. However,

if the `-k' or `--keep-going' ag is speci�ed, make continues to consider the other dependencies of

the pending targets, remaking them if necessary, before it gives up and returns nonzero status. For

example, after an error in compiling one object �le, `make -k' will continue compiling other object

�les even though it already knows that linking them will be impossible. See Section 9.7 [Summary

of Options], page 95.

The usual behavior assumes that your purpose is to get the speci�ed targets up to date; once

make learns that this is impossible, it might as well report the failure immediately. The `-k' option

says that the real purpose is to test as many of the changes made in the program as possible,

perhaps to �nd several independent problems so that you can correct them all before the next

attempt to compile. This is why Emacs' compile command passes the `-k' ag by default.

Usually when a command fails, if it has changed the target �le at all, the �le is corrupted and

cannot be used|or at least it is not completely updated. Yet the �le's timestamp says that it is

now up to date, so the next time make runs, it will not try to update that �le. The situation is

just the same as when the command is killed by a signal; see Section 5.5 [Interrupts], page 45. So

generally the right thing to do is to delete the target �le if the command fails after beginning to

change the �le. make will do this if .DELETE_ON_ERROR appears as a target. This is almost always

what you want make to do, but it is not historical practice; so for compatibility, you must explicitly

request it.

5.5 Interrupting or Killing make

If make gets a fatal signal while a command is executing, it may delete the target �le that

the command was supposed to update. This is done if the target �le's last-modi�cation time has

changed since make �rst checked it.

The purpose of deleting the target is to make sure that it is remade from scratch when make is

next run. Why is this? Suppose you type Ctrl-c while a compiler is running, and it has begun to

write an object �le `foo.o'. The Ctrl-c kills the compiler, resulting in an incomplete �le whose

last-modi�cation time is newer than the source �le `foo.c'. But make also receives the Ctrl-c

signal and deletes this incomplete �le. If make did not do this, the next invocation of make would

46 GNU make

.PRECIOUS
recursion
subdirectories, r
-C
--directory
MAKE
recursion, and M

think that `foo.o' did not require updating|resulting in a strange error message from the linker

when it tries to link an object �le half of which is missing.

You can prevent the deletion of a target �le in this way by making the special target .PRECIOUS

depend on it. Before remaking a target, make checks to see whether it appears on the dependencies

of .PRECIOUS, and thereby decides whether the target should be deleted if a signal happens. Some

reasons why you might do this are that the target is updated in some atomic fashion, or exists only

to record a modi�cation-time (its contents do not matter), or must exist at all times to prevent

other sorts of trouble.

5.6 Recursive Use of make

Recursive use of make means using make as a command in a make�le. This technique is useful

when you want separate make�les for various subsystems that compose a larger system. For

example, suppose you have a subdirectory `subdir' which has its own make�le, and you would

like the containing directory's make�le to run make on the subdirectory. You can do it by writing

this:

subsystem:

cd subdir; $(MAKE)

or, equivalently, this (see Section 9.7 [Summary of Options], page 95):

subsystem:

$(MAKE) -C subdir

You can write recursive make commands just by copying this example, but there are many things

to know about how they work and why, and about how the sub-make relates to the top-level make.

5.6.1 How the MAKE Variable Works

Recursive make commands should always use the variable MAKE, not the explicit command name

`make', as shown here:

subsystem:

cd subdir; $(MAKE)

Chapter 5: Writing the Commands in Rules 47

cd (shell comm
-t, and recursio
recursion, and -
--touch, and re
sub-make
environment, an
exporting variab
variables, enviro
variables, expor
recursion, and e
recursion, and v

The value of this variable is the �le name with which make was invoked. If this �le name

was `/bin/make', then the command executed is `cd subdir; /bin/make'. If you use a special

version of make to run the top-level make�le, the same special version will be executed for recursive

invocations.

As a special feature, using the variable MAKE in the commands of a rule alters the e�ects of the

`-t' (`--touch'), `-n' (`--just-print'), or `-q' (`--question') option. Using the MAKE variable

has the same e�ect as using a `+' character at the beginning of the command line. See Section 9.3

[Instead of Executing the Commands], page 91.

Consider the command `make -t' in the above example. (The `-t' option marks targets as up

to date without actually running any commands; see Section 9.3 [Instead of Execution], page 91.)

Following the usual de�nition of `-t', a `make -t' command in the example would create a �le named

`subsystem' and do nothing else. What you really want it to do is run `cd subdir; make -t'; but

that would require executing the command, and `-t' says not to execute commands.

The special feature makes this do what you want: whenever a command line of a rule contains

the variable MAKE, the ags `-t', `-n' and `-q' do not apply to that line. Command lines containing

MAKE are executed normally despite the presence of a ag that causes most commands not to be run.

The usual MAKEFLAGSmechanism passes the ags to the sub-make (see Section 5.6.3 [Communicating

Options to a Sub-make], page 50), so your request to touch the �les, or print the commands, is

propagated to the subsystem.

5.6.2 Communicating Variables to a Sub-make

Variable values of the top-level make can be passed to the sub-make through the environment

by explicit request. These variables are de�ned in the sub-make as defaults, but do not override

what is speci�ed in the make�le used by the sub-make make�le unless you use the `-e' switch (see

Section 9.7 [Summary of Options], page 95).

To pass down, or export, a variable, make adds the variable and its value to the environment

for running each command. The sub-make, in turn, uses the environment to initialize its table of

variable values. See Section 6.9 [Variables from the Environment], page 68.

Except by explicit request, make exports a variable only if it is either de�ned in the environment

initially or set on the command line, and if its name consists only of letters, numbers, and under-

scores. Some shells cannot cope with environment variable names consisting of characters other

than letters, numbers, and underscores.

48 GNU make

export
unexport

The special variables SHELL and MAKEFLAGS are always exported (unless you unexport them).

MAKEFILES is exported if you set it to anything.

make automatically passes down variable values that were de�ned on the command line, by

putting them in the MAKEFLAGS variable. See the next section.

Variables are not normally passed down if they were created by default by make (see Section 10.3

[Variables Used by Implicit Rules], page 106). The sub-make will de�ne these for itself.

If you want to export speci�c variables to a sub-make, use the export directive, like this:

export variable : : :

If you want to prevent a variable from being exported, use the unexport directive, like this:

unexport variable : : :

As a convenience, you can de�ne a variable and export it at the same time by doing:

export variable = value

has the same result as:

variable = value

export variable

and

export variable := value

has the same result as:

variable := value

export variable

Likewise,

export variable += value

Chapter 5: Writing the Commands in Rules 49

.EXPORT_ALL_V
compatibility in
MAKELEVEL
recursion, levelis just like:

variable += value

export variable

See Section 6.6 [Appending More Text to Variables], page 64.

You may notice that the export and unexport directives work in make in the same way they

work in the shell, sh.

If you want all variables to be exported by default, you can use export by itself:

export

This tells make that variables which are not explicitly mentioned in an export or unexport directive

should be exported. Any variable given in an unexport directive will still not be exported. If you

use export by itself to export variables by default, variables whose names contain characters other

than alphanumerics and underscores will not be exported unless speci�cally mentioned in an export

directive.

The behavior elicited by an export directive by itself was the default in older versions of GNU

make. If your make�les depend on this behavior and you want to be compatible with old versions

of make, you can write a rule for the special target .EXPORT_ALL_VARIABLES instead of using the

export directive. This will be ignored by old makes, while the export directive will cause a syntax

error.

Likewise, you can use unexport by itself to tell make not to export variables by default. Since

this is the default behavior, you would only need to do this if export had been used by itself earlier

(in an included make�le, perhaps). You cannot use export and unexport by themselves to have

variables exported for some commands and not for others. The last export or unexport directive

that appears by itself determines the behavior for the entire run of make.

As a special feature, the variable MAKELEVEL is changed when it is passed down from level to

level. This variable's value is a string which is the depth of the level as a decimal number. The

value is `0' for the top-level make; `1' for a sub-make, `2' for a sub-sub-make, and so on. The

incrementation happens when make sets up the environment for a command.

50 GNU make

MAKEFILES
options, and rec
recursion, and o
MAKEFLAGS
command line v
variables, comm
recursion, and c
-C, and recursio
-f, and recursio
-I, and recursio
-o, and recursio
-W, and recursio
--directory, a
--file, and rec
--include-dir
--old-file, an
--assume-old,
--assume-new,
--new-file, an
recursion, and -
recursion, and -
recursion, and -
recursion, and -
recursion, and -
-j, and recursio
--jobs, and rec
recursion, and -
job slots, and re

The main use of MAKELEVEL is to test it in a conditional directive (see Chapter 7 [Conditional

Parts of Make�les], page 71); this way you can write a make�le that behaves one way if run

recursively and another way if run directly by you.

You can use the variable MAKEFILES to cause all sub-make commands to use additional make�les.

The value of MAKEFILES is a whitespace-separated list of �le names. This variable, if de�ned in

the outer-level make�le, is passed down through the environment; then it serves as a list of extra

make�les for the sub-make to read before the usual or speci�ed ones. See Section 3.4 [The Variable

MAKEFILES], page 16.

5.6.3 Communicating Options to a Sub-make

Flags such as `-s' and `-k' are passed automatically to the sub-make through the variable

MAKEFLAGS. This variable is set up automatically by make to contain the ag letters that make

received. Thus, if you do `make -ks' then MAKEFLAGS gets the value `ks'.

As a consequence, every sub-make gets a value for MAKEFLAGS in its environment. In response,

it takes the ags from that value and processes them as if they had been given as arguments. See

Section 9.7 [Summary of Options], page 95.

Likewise variables de�ned on the command line are passed to the sub-make through MAKEFLAGS.

Words in the value of MAKEFLAGS that contain `=', make treats as variable de�nitions just as if they

appeared on the command line. See Section 9.5 [Overriding Variables], page 94.

The options `-C', `-f', `-I', `-o', and `-W' are not put into MAKEFLAGS; these options are not

passed down.

The `-j' option is a special case (see Section 5.3 [Parallel Execution], page 42). If you set it to

some numeric value, `-j 1' is always put into MAKEFLAGS instead of the value you speci�ed. This is

because if the `-j' option were passed down to sub-makes, you would get many more jobs running

in parallel than you asked for. If you give `-j' with no numeric argument, meaning to run as many

jobs as possible in parallel, this is passed down, since multiple in�nities are no more than one.

If you do not want to pass the other ags down, you must change the value of MAKEFLAGS, like

this:

MAKEFLAGS=

subsystem:

Chapter 5: Writing the Commands in Rules 51

MAKEOVERRIDES
Arg list too lon
E2BIG
.POSIX
POSIX.2
MFLAGS
setting options
options, setting
setting options
options, setting

cd subdir; $(MAKE)

or like this:

subsystem:

cd subdir; $(MAKE) MAKEFLAGS=

The command line variable de�nitions really appear in the variable MAKEOVERRIDES, and

MAKEFLAGS contains a reference to this variable. If you do want to pass ags down normally, but

don't want to pass down the command line variable de�nitions, you can reset MAKEOVERRIDES to

empty, like this:

MAKEOVERRIDES =

This is not usually useful to do. However, some systems have a small �xed limit on the size of the

environment, and putting so much information in into the value of MAKEFLAGS can exceed it. If

you see the error message `Arg list too long', this may be the problem. (For strict compliance

with POSIX.2, changing MAKEOVERRIDES does not a�ect MAKEFLAGS if the special target `.POSIX'

appears in the make�le. You probably do not care about this.)

A similar variable MFLAGS exists also, for historical compatibility. It has the same value as

MAKEFLAGS except that it does not contain the command line variable de�nitions, and it always

begins with a hyphen unless it is empty (MAKEFLAGS begins with a hyphen only when it begins with

an option that has no single-letter version, such as `--warn-undefined-variables'). MFLAGS was

traditionally used explicitly in the recursive make command, like this:

subsystem:

cd subdir; $(MAKE) $(MFLAGS)

but now MAKEFLAGS makes this usage redundant. If you want your make�les to be compatible with

old make programs, use this technique; it will work �ne with more modern make versions too.

The MAKEFLAGS variable can also be useful if you want to have certain options, such as `-k' (see

Section 9.7 [Summary of Options], page 95), set each time you run make. You simply put a value

for MAKEFLAGS in your environment. You can also set MAKEFLAGS in a make�le, to specify additional

ags that should also be in e�ect for that make�le. (Note that you cannot use MFLAGS this way.

That variable is set only for compatibility; make does not interpret a value you set for it in any

way.)

52 GNU make

directories, prin
printing directo
recursion, and p
-C, and -w
--directory, a
recursion, and -
-w, and -C
-w, and recursio
--print-direc
--print-direc
--no-print-di
--print-direc
-w, disabling
sequences of com
commands, sequ

When make interprets the value of MAKEFLAGS (either from the environment or from a make�le),

it �rst prepends a hyphen if the value does not already begin with one. Then it chops the value into

words separated by blanks, and parses these words as if they were options given on the command

line (except that `-C', `-f', `-h', `-o', `-W', and their long-named versions are ignored; and there is

no error for an invalid option).

If you do put MAKEFLAGS in your environment, you should be sure not to include any options that

will drastically a�ect the actions of make and undermine the purpose of make�les and of make itself.

For instance, the `-t', `-n', and `-q' options, if put in one of these variables, could have disastrous

consequences and would certainly have at least surprising and probably annoying e�ects.

5.6.4 The `--print-directory' Option

If you use several levels of recursive make invocations, the `-w' or `--print-directory' option

can make the output a lot easier to understand by showing each directory as make starts processing

it and as make �nishes processing it. For example, if `make -w' is run in the directory `/u/gnu/make',

make will print a line of the form:

make: Entering directory `/u/gnu/make'.

before doing anything else, and a line of the form:

make: Leaving directory `/u/gnu/make'.

when processing is completed.

Normally, you do not need to specify this option because `make' does it for you: `-w' is turned on

automatically when you use the `-C' option, and in sub-makes. make will not automatically turn on

`-w' if you also use `-s', which says to be silent, or if you use `--no-print-directory' to explicitly

disable it.

5.7 De�ning Canned Command Sequences

When the same sequence of commands is useful in making various targets, you can de�ne it as

a canned sequence with the define directive, and refer to the canned sequence from the rules for

those targets. The canned sequence is actually a variable, so the name must not conict with other

variable names.

Chapter 5: Writing the Commands in Rules 53

yacc
@, and define
-, and define
+, and defineHere is an example of de�ning a canned sequence of commands:

define run-yacc

yacc $(firstword $^)

mv y.tab.c $@

endef

Here run-yacc is the name of the variable being de�ned; endef marks the end of the de�nition;

the lines in between are the commands. The define directive does not expand variable references

and function calls in the canned sequence; the `$' characters, parentheses, variable names, and so

on, all become part of the value of the variable you are de�ning. See Section 6.8 [De�ning Variables

Verbatim], page 67, for a complete explanation of define.

The �rst command in this example runs Yacc on the �rst dependency of whichever rule uses

the canned sequence. The output �le from Yacc is always named `y.tab.c'. The second command

moves the output to the rule's target �le name.

To use the canned sequence, substitute the variable into the commands of a rule. You can

substitute it like any other variable (see Section 6.1 [Basics of Variable References], page 55).

Because variables de�ned by define are recursively expanded variables, all the variable references

you wrote inside the define are expanded now. For example:

foo.c : foo.y

$(run-yacc)

`foo.y' will be substituted for the variable `$^' when it occurs in run-yacc's value, and `foo.c'

for `$@'.

This is a realistic example, but this particular one is not needed in practice because make has

an implicit rule to �gure out these commands based on the �le names involved (see Chapter 10

[Using Implicit Rules], page 101).

In command execution, each line of a canned sequence is treated just as if the line appeared on

its own in the rule, preceded by a tab. In particular, make invokes a separate subshell for each line.

You can use the special pre�x characters that a�ect command lines (`@', `-', and `+') on each line of

a canned sequence. See Chapter 5 [Writing the Commands in Rules], page 41. For example, using

this canned sequence:

define frobnicate

@echo "frobnicating target $@"

54 GNU make

empty comman
commands, emp
.DEFAULT, and

frob-step-1 $< -o $@-step-1

frob-step-2 $@-step-1 -o $@

endef

make will not echo the �rst line, the echo command. But it will echo the following two command

lines.

On the other hand, pre�x characters on the command line that refers to a canned sequence

apply to every line in the sequence. So the rule:

frob.out: frob.in

@$(frobnicate)

does not echo any commands. (See Section 5.1 [Command Echoing], page 41, for a full explanation

of `@'.)

5.8 Using Empty Commands

It is sometimes useful to de�ne commands which do nothing. This is done simply by giving a

command that consists of nothing but whitespace. For example:

target: ;

de�nes an empty command string for `target'. You could also use a line beginning with a tab

character to de�ne an empty command string, but this would be confusing because such a line

looks empty.

You may be wondering why you would want to de�ne a command string that does nothing.

The only reason this is useful is to prevent a target from getting implicit commands (from implicit

rules or the .DEFAULT special target; see Chapter 10 [Implicit Rules], page 101 and see Section 10.6

[De�ning Last-Resort Default Rules], page 116).

You may be inclined to de�ne empty command strings for targets that are not actual �les, but

only exist so that their dependencies can be remade. However, this is not the best way to do that,

because the dependencies may not be remade properly if the target �le actually does exist. See

Section 4.4 [Phony Targets], page 27, for a better way to do this.

Chapter 6: How to Use Variables 55

variable
value
recursive variab
simple variable
macro
variables, how t
reference to var
$, in variable re
dollar sign ($),

6 How toUseVariables

A variable is a name de�ned in a make�le to represent a string of text, called the variable's

value. These values are substituted by explicit request into targets, dependencies, commands, and

other parts of the make�le. (In some other versions of make, variables are called macros.)

Variables and functions in all parts of a make�le are expanded when read, except for the shell

commands in rules, the right-hand sides of variable de�nitions using `=', and the bodies of variable

de�nitions using the define directive.

Variables can represent lists of �le names, options to pass to compilers, programs to run, direc-

tories to look in for source �les, directories to write output in, or anything else you can imagine.

A variable name may be any sequence of characters not containing `:', `#', `=', or leading or

trailing whitespace. However, variable names containing characters other than letters, numbers,

and underscores should be avoided, as they may be given special meanings in the future, and

with some shells they cannot be passed through the environment to a sub-make (see Section 5.6.2

[Communicating Variables to a Sub-make], page 47).

Variable names are case-sensitive. The names `foo', `FOO', and `Foo' all refer to di�erent vari-

ables.

It is traditional to use upper case letters in variable names, but we recommend using lower

case letters for variable names that serve internal purposes in the make�le, and reserving upper

case for parameters that control implicit rules or for parameters that the user should override with

command options (see Section 9.5 [Overriding Variables], page 94).

A few variables have names that are a single punctuation character or just a few characters.

These are the automatic variables, and they have particular specialized uses. See Section 10.5.3

[Automatic Variables], page 112.

6.1 Basics of Variable References

To substitute a variable's value, write a dollar sign followed by the name of the variable in

parentheses or braces: either `$(foo)' or `${foo}' is a valid reference to the variable foo. This

special signi�cance of `$' is why you must write `$$' to have the e�ect of a single dollar sign in a

�le name or command.

56 GNU make

avors of variab
recursive variab
variables, avor
recursively expa
variables, recurs
=

Variable references can be used in any context: targets, dependencies, commands, most direc-

tives, and new variable values. Here is an example of a common case, where a variable holds the

names of all the object �les in a program:

objects = program.o foo.o utils.o

program : $(objects)

cc -o program $(objects)

$(objects) : defs.h

Variable references work by strict textual substitution. Thus, the rule

foo = c

prog.o : prog.$(foo)

(foo)(foo) -$(foo) prog.$(foo)

could be used to compile a C program `prog.c'. Since spaces before the variable value are ignored

in variable assignments, the value of foo is precisely `c'. (Don't actually write your make�les this

way!)

A dollar sign followed by a character other than a dollar sign, open-parenthesis or open-brace

treats that single character as the variable name. Thus, you could reference the variable x with

`$x'. However, this practice is strongly discouraged, except in the case of the automatic variables

(see Section 10.5.3 [Automatic Variables], page 112).

6.2 The Two Flavors of Variables

There are two ways that a variable in GNU make can have a value; we call them the two avors

of variables. The two avors are distinguished in how they are de�ned and in what they do when

expanded.

The �rst avor of variable is a recursively expanded variable. Variables of this sort are de�ned

by lines using `=' (see Section 6.5 [Setting Variables], page 63) or by the define directive (see

Section 6.8 [De�ning Variables Verbatim], page 67). The value you specify is installed verbatim;

if it contains references to other variables, these references are expanded whenever this variable is

substituted (in the course of expanding some other string). When this happens, it is called recursive

expansion.

For example,

Chapter 6: How to Use Variables 57

loops in variabl
variables, loops
simply expande
variables, simpl
:=

foo = $(bar)

bar = $(ugh)

ugh = Huh?

all:;echo $(foo)

will echo `Huh?': `$(foo)' expands to `$(bar)' which expands to `$(ugh)' which �nally expands to

`Huh?'.

This avor of variable is the only sort supported by other versions of make. It has its advantages

and its disadvantages. An advantage (most would say) is that:

CFLAGS = $(include_dirs) -O

include_dirs = -Ifoo -Ibar

will do what was intended: when `CFLAGS' is expanded in a command, it will expand to `-Ifoo

-Ibar -O'. A major disadvantage is that you cannot append something on the end of a variable,

as in

CFLAGS = $(CFLAGS) -O

because it will cause an in�nite loop in the variable expansion. (Actually make detects the in�nite

loop and reports an error.)

Another disadvantage is that any functions (see Chapter 8 [Functions for Transforming Text],

page 77) referenced in the de�nition will be executed every time the variable is expanded. This

makes make run slower; worse, it causes the wildcard and shell functions to give unpredictable

results because you cannot easily control when they are called, or even how many times.

To avoid all the problems and inconveniences of recursively expanded variables, there is another

avor: simply expanded variables.

Simply expanded variables are de�ned by lines using `:=' (see Section 6.5 [Setting Variables],

page 63). The value of a simply expanded variable is scanned once and for all, expanding any

references to other variables and functions, when the variable is de�ned. The actual value of the

simply expanded variable is the result of expanding the text that you write. It does not contain

any references to other variables; it contains their values as of the time this variable was de�ned.

Therefore,

x := foo

58 GNU make

MAKELEVEL
MAKE
spaces, in variab
whitespace, in v
variables, space

y := $(x) bar

x := later

is equivalent to

y := foo bar

x := later

When a simply expanded variable is referenced, its value is substituted verbatim.

Here is a somewhat more complicated example, illustrating the use of `:=' in conjunction with

the shell function. (See Section 8.6 [The shell Function], page 86.) This example also shows

use of the variable MAKELEVEL, which is changed when it is passed down from level to level. (See

Section 5.6.2 [Communicating Variables to a Sub-make], page 47, for information about MAKELEVEL.)

ifeq (0,${MAKELEVEL})

cur-dir := $(shell pwd)

whoami := $(shell whoami)

host-type := $(shell arch)

MAKE := ${MAKE} host-type=${host-type} whoami=${whoami}

endif

An advantage of this use of `:=' is that a typical `descend into a directory' command then looks

like this:

${subdirs}:

${MAKE} cur-dir=${cur-dir}/$@ -C $@ all

Simply expanded variables generally make complicated make�le programming more predictable

because they work like variables in most programming languages. They allow you to rede�ne a

variable using its own value (or its value processed in some way by one of the expansion functions)

and to use the expansion functions much more e�ciently (see Chapter 8 [Functions for Transforming

Text], page 77).

You can also use them to introduce controlled leading whitespace into variable values. Leading

whitespace characters are discarded from your input before substitution of variable references and

function calls; this means you can include leading spaces in a variable value by protecting them

with variable references, like this:

nullstring :=

space := $(nullstring) # end of the line

Chapter 6: How to Use Variables 59

reference to var
modi�ed variab
substitution var
variables, modi�
variables, subst
variables, subst
su�x, substitut
patsubst

Here the value of the variable space is precisely one space. The comment `# end of the line' is

included here just for clarity. Since trailing space characters are not stripped from variable values,

just a space at the end of the line would have the same e�ect (but be rather hard to read). If you

put whitespace at the end of a variable value, it is a good idea to put a comment like that at the

end of the line to make your intent clear. Conversely, if you do not want any whitespace characters

at the end of your variable value, you must remember not to put a random comment on the end of

the line after some whitespace, such as this:

dir := /foo/bar # directory to put the frobs in

Here the value of the variable dir is `/foo/bar ' (with four trailing spaces), which was probably

not the intention. (Imagine something like `$(dir)/file' with this de�nition!)

6.3 Advanced Features for Reference to Variables

This section describes some advanced features you can use to reference variables in more exible

ways.

6.3.1 Substitution References

A substitution reference substitutes the value of a variable with alterations that you specify. It

has the form `$(var:a=b)' (or `${var:a=b}') and its meaning is to take the value of the variable

var, replace every a at the end of a word with b in that value, and substitute the resulting string.

When we say \at the end of a word", we mean that a must appear either followed by whitespace

or at the end of the value in order to be replaced; other occurrences of a in the value are unaltered.

For example:

foo := a.o b.o c.o

bar := $(foo:.o=.c)

sets `bar' to `a.c b.c c.c'. See Section 6.5 [Setting Variables], page 63.

A substitution reference is actually an abbreviation for use of the patsubst expansion function

(see Section 8.2 [Functions for String Substitution and Analysis], page 78). We provide substitution

references as well as patsubst for compatibility with other implementations of make.

60 GNU make

nested variable
computed varia
variables, comp
variables, nested
variables, `$' in
$, in variable na
dollar sign ($),

Another type of substitution reference lets you use the full power of the patsubst function.

It has the same form `$(var:a=b)' described above, except that now a must contain a single `%'

character. This case is equivalent to `$(patsubst a,b,$(var))'. See Section 8.2 [Functions for

String Substitution and Analysis], page 78, for a description of the patsubst function.

For example:

foo := a.o b.o c.o

bar := $(foo:%.o=%.c)

sets `bar' to `a.c b.c c.c'.

6.3.2 Computed Variable Names

Computed variable names are a complicated concept needed only for sophisticated make�le

programming. For most purposes you need not consider them, except to know that making a

variable with a dollar sign in its name might have strange results. However, if you are the type

that wants to understand everything, or you are actually interested in what they do, read on.

Variables may be referenced inside the name of a variable. This is called a computed variable

name or a nested variable reference. For example,

x = y

y = z

a := $($(x))

de�nes a as `z': the `$(x)' inside `$($(x))' expands to `y', so `$($(x))' expands to `$(y)' which

in turn expands to `z'. Here the name of the variable to reference is not stated explicitly; it is

computed by expansion of `$(x)'. The reference `$(x)' here is nested within the outer variable

reference.

The previous example shows two levels of nesting, but any number of levels is possible. For

example, here are three levels:

x = y

y = z

z = u

a := $($($(x)))

Chapter 6: How to Use Variables 61

Here the innermost `$(x)' expands to `y', so `$($(x))' expands to `$(y)' which in turn expands to

`z'; now we have `$(z)', which becomes `u'.

References to recursively-expanded variables within a variable name are reexpanded in the usual

fashion. For example:

x = $(y)

y = z

z = Hello

a := $($(x))

de�nes a as `Hello': `$($(x))' becomes `$($(y))' which becomes `$(z)' which becomes `Hello'.

Nested variable references can also contain modi�ed references and function invocations (see

Chapter 8 [Functions for Transforming Text], page 77), just like any other reference. For example,

using the subst function (see Section 8.2 [Functions for String Substitution and Analysis], page 78):

x = variable1

variable2 := Hello

y = $(subst 1,2,$(x))

z = y

a := $($($(z)))

eventually de�nes a as `Hello'. It is doubtful that anyone would ever want to write a nested

reference as convoluted as this one, but it works: `$($($(z)))' expands to `$($(y))' which becomes

`$($(subst 1,2,$(x)))'. This gets the value `variable1' from x and changes it by substitution to

`variable2', so that the entire string becomes `$(variable2)', a simple variable reference whose

value is `Hello'.

A computed variable name need not consist entirely of a single variable reference. It can contain

several variable references, as well as some invariant text. For example,

a_dirs := dira dirb

1_dirs := dir1 dir2

a_files := filea fileb

1_files := file1 file2

ifeq "$(use_a)" "yes"

a1 := a

else

a1 := 1

endif

62 GNU make

ifeq "$(use_dirs)" "yes"

df := dirs

else

df := files

endif

dirs := $($(a1)_$(df))

will give dirs the same value as a_dirs, 1_dirs, a_files or 1_files depending on the settings

of use_a and use_dirs.

Computed variable names can also be used in substitution references:

a_objects := a.o b.o c.o

1_objects := 1.o 2.o 3.o

sources := $($(a1)_objects:.o=.c)

de�nes sources as either `a.c b.c c.c' or `1.c 2.c 3.c', depending on the value of a1.

The only restriction on this sort of use of nested variable references is that they cannot specify

part of the name of a function to be called. This is because the test for a recognized function name

is done before the expansion of nested references. For example,

ifdef do_sort

func := sort

else

func := strip

endif

bar := a d b g q c

foo := $($(func) $(bar))

attempts to give `foo' the value of the variable `sort a d b g q c' or `strip a d b g q c', rather

than giving `a d b g q c' as the argument to either the sort or the strip function. This restriction

could be removed in the future if that change is shown to be a good idea.

You can also use computed variable names in the left-hand side of a variable assignment, or in

a define directive, as in:

dir = foo

$(dir)_sources := $(wildcard $(dir)/*.c)

Chapter 6: How to Use Variables 63

variables, how t
value, how a va
setting variable
variables, settin
=
:=

define $(dir)_print

lpr $($(dir)_sources)

endef

This example de�nes the variables `dir', `foo_sources', and `foo_print'.

Note that nested variable references are quite di�erent from recursively expanded variables (see

Section 6.2 [The Two Flavors of Variables], page 56), though both are used together in complex

ways when doing make�le programming.

6.4 How Variables Get Their Values

Variables can get values in several di�erent ways:

� You can specify an overriding value when you run make. See Section 9.5 [Overriding Variables],

page 94.

� You can specify a value in the make�le, either with an assignment (see Section 6.5 [Setting

Variables], page 63) or with a verbatim de�nition (see Section 6.8 [De�ning Variables Verbatim],

page 67).

� Variables in the environment become make variables. See Section 6.9 [Variables from the

Environment], page 68.

� Several automatic variables are given new values for each rule. Each of these has a single

conventional use. See Section 10.5.3 [Automatic Variables], page 112.

� Several variables have constant initial values. See Section 10.3 [Variables Used by Implicit

Rules], page 106.

6.5 Setting Variables

To set a variable from the make�le, write a line starting with the variable name followed by `='

or `:='. Whatever follows the `=' or `:=' on the line becomes the value. For example,

objects = main.o foo.o bar.o utils.o

de�nes a variable named objects. Whitespace around the variable name and immediately after

the `=' is ignored.

64 GNU make

+=
appending to va
variables, appen

Variables de�ned with `=' are recursively expanded variables. Variables de�ned with `:=' are

simply expanded variables; these de�nitions can contain variable references which will be expanded

before the de�nition is made. See Section 6.2 [The Two Flavors of Variables], page 56.

The variable name may contain function and variable references, which are expanded when the

line is read to �nd the actual variable name to use.

There is no limit on the length of the value of a variable except the amount of swapping space

on the computer. When a variable de�nition is long, it is a good idea to break it into several

lines by inserting backslash-newline at convenient places in the de�nition. This will not a�ect the

functioning of make, but it will make the make�le easier to read.

Most variable names are considered to have the empty string as a value if you have never set

them. Several variables have built-in initial values that are not empty, but you can set them in the

usual ways (see Section 10.3 [Variables Used by Implicit Rules], page 106). Several special variables

are set automatically to a new value for each rule; these are called the automatic variables (see

Section 10.5.3 [Automatic Variables], page 112).

6.6 AppendingMore Text to Variables

Often it is useful to add more text to the value of a variable already de�ned. You do this with

a line containing `+=', like this:

objects += another.o

This takes the value of the variable objects, and adds the text `another.o' to it (preceded by a

single space). Thus:

objects = main.o foo.o bar.o utils.o

objects += another.o

sets objects to `main.o foo.o bar.o utils.o another.o'.

Using `+=' is similar to:

objects = main.o foo.o bar.o utils.o

objects := $(objects) another.o

Chapter 6: How to Use Variables 65

but di�ers in ways that become important when you use more complex values.

When the variable in question has not been de�ned before, `+=' acts just like normal `=': it

de�nes a recursively-expanded variable. However, when there is a previous de�nition, exactly what

`+=' does depends on what avor of variable you de�ned originally. See Section 6.2 [The Two

Flavors of Variables], page 56, for an explanation of the two avors of variables.

When you add to a variable's value with `+=', make acts essentially as if you had included the

extra text in the initial de�nition of the variable. If you de�ned it �rst with `:=', making it a

simply-expanded variable, `+=' adds to that simply-expanded de�nition, and expands the new text

before appending it to the old value just as `:=' does (see Section 6.5 [Setting Variables], page 63,

for a full explanation of `:='). In fact,

variable := value

variable += more

is exactly equivalent to:

variable := value

variable := $(variable) more

On the other hand, when you use `+=' with a variable that you de�ned �rst to be recursively-

expanded using plain `=', make does something a bit di�erent. Recall that when you de�ne a

recursively-expanded variable, make does not expand the value you set for variable and function

references immediately. Instead it stores the text verbatim, and saves these variable and function

references to be expanded later, when you refer to the new variable (see Section 6.2 [The Two

Flavors of Variables], page 56). When you use `+=' on a recursively-expanded variable, it is this

unexpanded text to which make appends the new text you specify.

variable = value

variable += more

is roughly equivalent to:

temp = value

variable = $(temp) more

except that of course it never de�nes a variable called temp. The importance of this comes when

the variable's old value contains variable references. Take this common example:

66 GNU make

override
overriding with
variables, overri

CFLAGS = $(includes) -O

: : :

CFLAGS += -pg # enable profiling

The �rst line de�nes the CFLAGS variable with a reference to another variable, includes. (CFLAGS is

used by the rules for C compilation; see Section 10.2 [Catalogue of Implicit Rules], page 103.) Using

`=' for the de�nition makes CFLAGS a recursively-expanded variable, meaning `$(includes) -O' is

not expanded when make processes the de�nition of CFLAGS. Thus, includes need not be de�ned

yet for its value to take e�ect. It only has to be de�ned before any reference to CFLAGS. If we tried

to append to the value of CFLAGS without using `+=', we might do it like this:

CFLAGS := $(CFLAGS) -pg # enable profiling

This is pretty close, but not quite what we want. Using `:=' rede�nes CFLAGS as a simply-expanded

variable; this means make expands the text `$(CFLAGS) -pg' before setting the variable. If includes

is not yet de�ned, we get ` -O -pg', and a later de�nition of includeswill have no e�ect. Conversely,

by using `+=' we set CFLAGS to the unexpanded value `$(includes) -O -pg'. Thus we preserve the

reference to includes, so if that variable gets de�ned at any later point, a reference like `$(CFLAGS)'

still uses its value.

6.7 The overrideDirective

If a variable has been set with a command argument (see Section 9.5 [Overriding Variables],

page 94), then ordinary assignments in the make�le are ignored. If you want to set the variable in

the make�le even though it was set with a command argument, you can use an override directive,

which is a line that looks like this:

override variable = value

or

override variable := value

To append more text to a variable de�ned on the command line, use:

override variable += more text

See Section 6.6 [Appending More Text to Variables], page 64.

Chapter 6: How to Use Variables 67

define
endef
verbatim variab
de�ning variabl
variables, de�ni

The override directive was not invented for escalation in the war between make�les and com-

mand arguments. It was invented so you can alter and add to values that the user speci�es with

command arguments.

For example, suppose you always want the `-g' switch when you run the C compiler, but you

would like to allow the user to specify the other switches with a command argument just as usual.

You could use this override directive:

override CFLAGS += -g

You can also use override directives with define directives. This is done as you might expect:

override define foo

bar

endef

See the next section for information about define.

6.8 De�ning Variables Verbatim

Another way to set the value of a variable is to use the define directive. This directive has an

unusual syntax which allows newline characters to be included in the value, which is convenient for

de�ning canned sequences of commands (see Section 5.7 [De�ning Canned Command Sequences],

page 52).

The define directive is followed on the same line by the name of the variable and nothing more.

The value to give the variable appears on the following lines. The end of the value is marked by

a line containing just the word endef. Aside from this di�erence in syntax, define works just

like `=': it creates a recursively-expanded variable (see Section 6.2 [The Two Flavors of Variables],

page 56). The variable name may contain function and variable references, which are expanded

when the directive is read to �nd the actual variable name to use.

define two-lines

echo foo

echo $(bar)

endef

68 GNU make

variables, enviro
environment

The value in an ordinary assignment cannot contain a newline; but the newlines that separate

the lines of the value in a define become part of the variable's value (except for the �nal newline

which precedes the endef and is not considered part of the value).

The previous example is functionally equivalent to this:

two-lines = echo foo; echo $(bar)

since two commands separated by semicolon behave much like two separate shell commands. How-

ever, note that using two separate lines means make will invoke the shell twice, running an inde-

pendent subshell for each line. See Section 5.2 [Command Execution], page 42.

If you want variable de�nitions made with define to take precedence over command-line variable

de�nitions, you can use the override directive together with define:

override define two-lines

foo

$(bar)

endef

See Section 6.7 [The override Directive], page 66.

6.9 Variables from the Environment

Variables in make can come from the environment in which make is run. Every environment

variable that make sees when it starts up is transformed into a make variable with the same name

and value. But an explicit assignment in the make�le, or with a command argument, overrides the

environment. (If the `-e' ag is speci�ed, then values from the environment override assignments

in the make�le. See Section 9.7 [Summary of Options], page 95. But this is not recommended

practice.)

Thus, by setting the variable CFLAGS in your environment, you can cause all C compilations in

most make�les to use the compiler switches you prefer. This is safe for variables with standard or

conventional meanings because you know that no make�le will use them for other things. (But this

is not totally reliable; some make�les set CFLAGS explicitly and therefore are not a�ected by the

value in the environment.)

Chapter 6: How to Use Variables 69

When make is invoked recursively, variables de�ned in the outer invocation can be passed to

inner invocations through the environment (see Section 5.6 [Recursive Use of make], page 46).

By default, only variables that came from the environment or the command line are passed to

recursive invocations. You can use the export directive to pass other variables. See Section 5.6.2

[Communicating Variables to a Sub-make], page 47, for full details.

Other use of variables from the environment is not recommended. It is not wise for make�les

to depend for their functioning on environment variables set up outside their control, since this

would cause di�erent users to get di�erent results from the same make�le. This is against the whole

purpose of most make�les.

Such problems would be especially likely with the variable SHELL, which is normally present in

the environment to specify the user's choice of interactive shell. It would be very undesirable for

this choice to a�ect make. So make ignores the environment value of SHELL.

70 GNU make

Chapter 7: Conditional Parts of Make�les 71

conditionals

7 Conditional Parts ofMake�les

A conditional causes part of a make�le to be obeyed or ignored depending on the values of

variables. Conditionals can compare the value of one variable to another, or the value of a variable

to a constant string. Conditionals control what make actually \sees" in the make�le, so they cannot

be used to control shell commands at the time of execution.

7.1 Example of a Conditional

The following example of a conditional tells make to use one set of libraries if the CC variable

is `gcc', and a di�erent set of libraries otherwise. It works by controlling which of two command

lines will be used as the command for a rule. The result is that `CC=gcc' as an argument to make

changes not only which compiler is used but also which libraries are linked.

libs_for_gcc = -lgnu

normal_libs =

foo: $(objects)

ifeq ($(CC),gcc)

$(CC) -o foo $(objects) $(libs_for_gcc)

else

$(CC) -o foo $(objects) $(normal_libs)

endif

This conditional uses three directives: one ifeq, one else and one endif.

The ifeq directive begins the conditional, and speci�es the condition. It contains two arguments,

separated by a comma and surrounded by parentheses. Variable substitution is performed on both

arguments and then they are compared. The lines of the make�le following the ifeq are obeyed if

the two arguments match; otherwise they are ignored.

The else directive causes the following lines to be obeyed if the previous conditional failed. In

the example above, this means that the second alternative linking command is used whenever the

�rst alternative is not used. It is optional to have an else in a conditional.

The endif directive ends the conditional. Every conditional must end with an endif. Uncon-

ditional make�le text follows.

72 GNU make

ifdef
ifeq
ifndef
ifneq
else
endif

As this example illustrates, conditionals work at the textual level: the lines of the conditional

are treated as part of the make�le, or ignored, according to the condition. This is why the larger

syntactic units of the make�le, such as rules, may cross the beginning or the end of the conditional.

When the variable CC has the value `gcc', the above example has this e�ect:

foo: $(objects)

$(CC) -o foo $(objects) $(libs_for_gcc)

When the variable CC has any other value, the e�ect is this:

foo: $(objects)

$(CC) -o foo $(objects) $(normal_libs)

Equivalent results can be obtained in another way by conditionalizing a variable assignment and

then using the variable unconditionally:

libs_for_gcc = -lgnu

normal_libs =

ifeq ($(CC),gcc)

libs=$(libs_for_gcc)

else

libs=$(normal_libs)

endif

foo: $(objects)

$(CC) -o foo $(objects) $(libs)

7.2 Syntax of Conditionals

The syntax of a simple conditional with no else is as follows:

conditional-directive
text-if-true
endif

The text-if-true may be any lines of text, to be considered as part of the make�le if the condition

is true. If the condition is false, no text is used instead.

Chapter 7: Conditional Parts of Make�les 73

The syntax of a complex conditional is as follows:

conditional-directive
text-if-true
else

text-if-false
endif

If the condition is true, text-if-true is used; otherwise, text-if-false is used instead. The text-if-false

can be any number of lines of text.

The syntax of the conditional-directive is the same whether the conditional is simple or complex.

There are four di�erent directives that test di�erent conditions. Here is a table of them:

ifeq (arg1, arg2)

ifeq 'arg1' 'arg2'

ifeq "arg1" "arg2"

ifeq "arg1" 'arg2'

ifeq 'arg1' "arg2"

Expand all variable references in arg1 and arg2 and compare them. If they are identical,

the text-if-true is e�ective; otherwise, the text-if-false, if any, is e�ective.

Often you want to test if a variable has a non-empty value. When the value results from

complex expansions of variables and functions, expansions you would consider empty

may actually contain whitespace characters and thus are not seen as empty. However,

you can use the strip function (see Section 8.2 [Text Functions], page 78) to avoid

interpreting whitespace as a non-empty value. For example:

ifeq ($(strip $(foo)),)

text-if-empty
endif

will evaluate text-if-empty even if the expansion of $(foo) contains whitespace char-

acters.

ifneq (arg1, arg2)

ifneq 'arg1' 'arg2'

ifneq "arg1" "arg2"

ifneq "arg1" 'arg2'

ifneq 'arg1' "arg2"

Expand all variable references in arg1 and arg2 and compare them. If they are di�erent,

the text-if-true is e�ective; otherwise, the text-if-false, if any, is e�ective.

74 GNU make

ifdef variable-name

If the variable variable-name has a non-empty value, the text-if-true is e�ective; oth-

erwise, the text-if-false, if any, is e�ective. Variables that have never been de�ned have

an empty value.

Note that ifdef only tests whether a variable has a value. It does not expand the

variable to see if that value is nonempty. Consequently, tests using ifdef return true for

all de�nitions except those like foo =. To test for an empty value, use ifeq ($(foo),).

For example,

bar =

foo = $(bar)

ifdef foo

frobozz = yes

else

frobozz = no

endif

sets `frobozz' to `yes', while:

foo =

ifdef foo

frobozz = yes

else

frobozz = no

endif

sets `frobozz' to `no'.

ifndef variable-name

If the variable variable-name has an empty value, the text-if-true is e�ective; otherwise,

the text-if-false, if any, is e�ective.

Extra spaces are allowed and ignored at the beginning of the conditional directive line, but a

tab is not allowed. (If the line begins with a tab, it will be considered a command for a rule.) Aside

from this, extra spaces or tabs may be inserted with no e�ect anywhere except within the directive

name or within an argument. A comment starting with `#' may appear at the end of the line.

The other two directives that play a part in a conditional are else and endif. Each of these

directives is written as one word, with no arguments. Extra spaces are allowed and ignored at the

beginning of the line, and spaces or tabs at the end. A comment starting with `#' may appear at

the end of the line.

Conditionals a�ect which lines of the make�le make uses. If the condition is true, make reads

the lines of the text-if-true as part of the make�le; if the condition is false, make ignores those lines

completely. It follows that syntactic units of the make�le, such as rules, may safely be split across

the beginning or the end of the conditional.

Chapter 7: Conditional Parts of Make�les 75

make evaluates conditionals when it reads a make�le. Consequently, you cannot use automatic

variables in the tests of conditionals because they are not de�ned until commands are run (see

Section 10.5.3 [Automatic Variables], page 112).

To prevent intolerable confusion, it is not permitted to start a conditional in one make�le and

end it in another. However, you may write an include directive within a conditional, provided you

do not attempt to terminate the conditional inside the included �le.

7.3 Conditionals that Test Flags

You can write a conditional that tests make command ags such as `-t' by using the variable

MAKEFLAGS together with the findstring function (see Section 8.2 [Functions for String Substitu-

tion and Analysis], page 78). This is useful when touch is not enough to make a �le appear up to

date.

The findstring function determines whether one string appears as a substring of another. If

you want to test for the `-t' ag, use `t' as the �rst string and the value of MAKEFLAGS as the other.

For example, here is how to arrange to use `ranlib -t' to �nish marking an archive �le up to

date:

archive.a: : : :

ifneq (,$(findstring t,$(MAKEFLAGS)))

+touch archive.a

+ranlib -t archive.a

else

ranlib archive.a

endif

The `+' pre�x marks those command lines as \recursive" so that they will be executed despite use

of the `-t' ag. See Section 5.6 [Recursive Use of make], page 46.

76 GNU make

Chapter 8: Functions for Transforming Text 77

functions
$, in function ca
dollar sign ($),
arguments of fu
functions, synta

8 Functions for Transforming Text

Functions allow you to do text processing in the make�le to compute the �les to operate on

or the commands to use. You use a function in a function call, where you give the name of the

function and some text (the arguments) for the function to operate on. The result of the function's

processing is substituted into the make�le at the point of the call, just as a variable might be

substituted.

8.1 Function Call Syntax

A function call resembles a variable reference. It looks like this:

$(function arguments)

or like this:

${function arguments}

Here function is a function name; one of a short list of names that are part of make. There is

no provision for de�ning new functions.

The arguments are the arguments of the function. They are separated from the function name

by one or more spaces or tabs, and if there is more than one argument, then they are separated by

commas. Such whitespace and commas are not part of an argument's value. The delimiters which

you use to surround the function call, whether parentheses or braces, can appear in an argument

only in matching pairs; the other kind of delimiters may appear singly. If the arguments themselves

contain other function calls or variable references, it is wisest to use the same kind of delimiters

for all the references; write `$(subst a,b,$(x))', not `$(subst a,b,${x})'. This is because it is

clearer, and because only one type of delimiter is matched to �nd the end of the reference.

The text written for each argument is processed by substitution of variables and function calls

to produce the argument value, which is the text on which the function acts. The substitution is

done in the order in which the arguments appear.

Commas and unmatched parentheses or braces cannot appear in the text of an argument as

written; leading spaces cannot appear in the text of the �rst argument as written. These characters

can be put into the argument value by variable substitution. First de�ne variables comma and space

78 GNU make

functions, for te
subst
patsubst
%, quoting in pa
%, quoting with
\ (backslash), t
backslash (\), t
quoting %, in pa

whose values are isolated comma and space characters, then substitute these variables where such

characters are wanted, like this:

comma:= ,

empty:=

space:= $(empty) $(empty)

foo:= a b c

bar:= $(subst $(space),$(comma),$(foo))

bar is now `a,b,c'.

Here the subst function replaces each space with a comma, through the value of foo, and substitutes

the result.

8.2 Functions for String Substitution and Analysis

Here are some functions that operate on strings:

$(subst from,to,text)

Performs a textual replacement on the text text: each occurrence of from is replaced

by to. The result is substituted for the function call. For example,

$(subst ee,EE,feet on the street)

substitutes the string `fEEt on the strEEt'.

$(patsubst pattern,replacement,text)

Finds whitespace-separated words in text that match pattern and replaces them with

replacement. Here pattern may contain a `%' which acts as a wildcard, matching any

number of any characters within a word. If replacement also contains a `%', the `%' is

replaced by the text that matched the `%' in pattern.

`%' characters in patsubst function invocations can be quoted with preceding back-

slashes (`\'). Backslashes that would otherwise quote `%' characters can be quoted

with more backslashes. Backslashes that quote `%' characters or other backslashes are

removed from the pattern before it is compared �le names or has a stem substituted

into it. Backslashes that are not in danger of quoting `%' characters go unmolested.

For example, the pattern `the\%weird\\%pattern\\' has `the%weird\' preceding the

operative `%' character, and `pattern\\' following it. The �nal two backslashes are left

alone because they cannot a�ect any `%' character.

Whitespace between words is folded into single space characters; leading and trailing

whitespace is discarded.

For example,

Chapter 8: Functions for Transforming Text 79

stripping whites
whitespace, stri
spaces, strippin
strip
findstring
searching for st
�nding strings
strings, searchin

$(patsubst %.c,%.o,x.c.c bar.c)

produces the value `x.c.o bar.o'.

Substitution references (see Section 6.3.1 [Substitution References], page 59) are a

simpler way to get the e�ect of the patsubst function:

$(var:pattern=replacement)

is equivalent to

$(patsubst pattern,replacement,$(var))

The second shorthand simpli�es one of the most common uses of patsubst: replacing

the su�x at the end of �le names.

$(var:su�x=replacement)

is equivalent to

$(patsubst %su�x,%replacement,$(var))

For example, you might have a list of object �les:

objects = foo.o bar.o baz.o

To get the list of corresponding source �les, you could simply write:

$(objects:.o=.c)

instead of using the general form:

$(patsubst %.o,%.c,$(objects))

$(strip string)

Removes leading and trailing whitespace from string and replaces each internal se-

quence of one or more whitespace characters with a single space. Thus, `$(strip a b

c)' results in `a b c'.

The function strip can be very useful when used in conjunction with conditionals.

When comparing something with the empty string `' using ifeq or ifneq, you usually

want a string of just whitespace to match the empty string (see Chapter 7 [Condition-

als], page 71).

Thus, the following may fail to have the desired results:

.PHONY: all

ifneq "$(needs_made)" ""

all: $(needs_made)

else

all:;@echo 'Nothing to make!'

endif

Replacing the variable reference `$(needs_made)' with the function call `$(strip $(needs_made))'

in the ifneq directive would make it more robust.

$(findstring �nd,in)

Searches in for an occurrence of �nd. If it occurs, the value is �nd; otherwise, the value

is empty. You can use this function in a conditional to test for the presence of a speci�c

substring in a given string. Thus, the two examples,

80 GNU make

filter
�ltering words
words, �ltering
filter-out
�ltering out wo
words, �ltering
sort
sorting words
removing duplic
duplicate words
words, removing

$(findstring a,a b c)

$(findstring a,b c)

produce the values `a' and `' (the empty string), respectively. See Section 7.3 [Testing

Flags], page 75, for a practical application of findstring.

$(filter pattern: : :,text)

Removes all whitespace-separated words in text that do not match any of the pattern

words, returning only matching words. The patterns are written using `%', just like the

patterns used in the patsubst function above.

The filter function can be used to separate out di�erent types of strings (such as �le

names) in a variable. For example:

sources := foo.c bar.c baz.s ugh.h

foo: $(sources)

cc $(filter %.c %.s,$(sources)) -o foo

says that `foo' depends of `foo.c', `bar.c', `baz.s' and `ugh.h' but only `foo.c',

`bar.c' and `baz.s' should be speci�ed in the command to the compiler.

$(filter-out pattern: : :,text)

Removes all whitespace-separated words in text that do match the pattern words,

returning only the words that do not match. This is the exact opposite of the filter

function.

For example, given:

objects=main1.o foo.o main2.o bar.o

mains=main1.o main2.o

the following generates a list which contains all the object �les not in `mains':

$(filter-out $(mains),$(objects))

$(sort list)

Sorts the words of list in lexical order, removing duplicate words. The output is a list

of words separated by single spaces. Thus,

$(sort foo bar lose)

returns the value `bar foo lose'.

Incidentally, since sort removes duplicate words, you can use it for this purpose even

if you don't care about the sort order.

Here is a realistic example of the use of subst and patsubst. Suppose that a make�le uses

the VPATH variable to specify a list of directories that make should search for dependency �les (see

Section 4.3.1 [VPATH Search Path for All Dependencies], page 23). This example shows how to tell

the C compiler to search for header �les in the same list of directories.

The value of VPATH is a list of directories separated by colons, such as `src:../headers'. First,

the subst function is used to change the colons to spaces:

Chapter 8: Functions for Transforming Text 81

functions, for �
�le name functi
dir
directory part
�le name, direc
notdir
�le name, nond
nondirectory pa

$(subst :, ,$(VPATH))

This produces `src ../headers'. Then patsubst is used to turn each directory name into a `-I'

ag. These can be added to the value of the variable CFLAGS, which is passed automatically to the

C compiler, like this:

override CFLAGS += $(patsubst %,-I%,$(subst :, ,$(VPATH)))

The e�ect is to append the text `-Isrc -I../headers' to the previously given value of CFLAGS. The

override directive is used so that the new value is assigned even if the previous value of CFLAGS

was speci�ed with a command argument (see Section 6.7 [The override Directive], page 66).

8.3 Functions for File Names

Several of the built-in expansion functions relate speci�cally to taking apart �le names or lists

of �le names.

Each of the following functions performs a speci�c transformation on a �le name. The argument

of the function is regarded as a series of �le names, separated by whitespace. (Leading and trailing

whitespace is ignored.) Each �le name in the series is transformed in the same way and the results

are concatenated with single spaces between them.

$(dir names: : :)

Extracts the directory-part of each �le name in names. The directory-part of the �le

name is everything up through (and including) the last slash in it. If the �le name

contains no slash, the directory part is the string `./'. For example,

$(dir src/foo.c hacks)

produces the result `src/ ./'.

$(notdir names: : :)

Extracts all but the directory-part of each �le name in names. If the �le name contains

no slash, it is left unchanged. Otherwise, everything through the last slash is removed

from it.

A �le name that ends with a slash becomes an empty string. This is unfortunate,

because it means that the result does not always have the same number of whitespace-

separated �le names as the argument had; but we do not see any other valid alternative.

For example,

82 GNU make

suffix
su�x, function
�le name su�x
basename
basename
�le name, basen
addsuffix
su�x, adding
�le name su�x,
addprefix
pre�x, adding
�le name pre�x
join
joining lists of w
words, joining l

$(notdir src/foo.c hacks)

produces the result `foo.c hacks'.

$(suffix names: : :)

Extracts the su�x of each �le name in names. If the �le name contains a period, the

su�x is everything starting with the last period. Otherwise, the su�x is the empty

string. This frequently means that the result will be empty when names is not, and if

names contains multiple �le names, the result may contain fewer �le names.

For example,

$(suffix src/foo.c hacks)

produces the result `.c'.

$(basename names: : :)

Extracts all but the su�x of each �le name in names. If the �le name contains a

period, the basename is everything starting up to (and not including) the last period.

Otherwise, the basename is the entire �le name. For example,

$(basename src/foo.c hacks)

produces the result `src/foo hacks'.

$(addsuffix su�x,names: : :)

The argument names is regarded as a series of names, separated by whitespace; su�x

is used as a unit. The value of su�x is appended to the end of each individual name

and the resulting larger names are concatenated with single spaces between them. For

example,

$(addsuffix .c,foo bar)

produces the result `foo.c bar.c'.

$(addprefix pre�x,names: : :)

The argument names is regarded as a series of names, separated by whitespace; pre�x

is used as a unit. The value of pre�x is prepended to the front of each individual name

and the resulting larger names are concatenated with single spaces between them. For

example,

$(addprefix src/,foo bar)

produces the result `src/foo src/bar'.

$(join list1,list2)

Concatenates the two arguments word by word: the two �rst words (one from each

argument) concatenated form the �rst word of the result, the two second words form

the second word of the result, and so on. So the nth word of the result comes from the

nth word of each argument. If one argument has more words that the other, the extra

words are copied unchanged into the result.

For example, `$(join a b,.c .o)' produces `a.c b.o'.

Chapter 8: Functions for Transforming Text 83

word
words, selecting
selecting words
words
words, �nding n
firstword
words, extractin
wildcard
wildcard, functi
foreach
words, iterating

Whitespace between the words in the lists is not preserved; it is replaced with a single

space.

This function can merge the results of the dir and notdir functions, to produce the

original list of �les which was given to those two functions.

$(word n,text)

Returns the nth word of text. The legitimate values of n start from 1. If n is bigger

than the number of words in text, the value is empty. For example,

$(word 2, foo bar baz)

returns `bar'.

$(words text)

Returns the number of words in text. Thus, the last word of text is $(word $(words text),text).

$(firstword names: : :)

The argument names is regarded as a series of names, separated by whitespace. The

value is the �rst name in the series. The rest of the names are ignored.

For example,

$(firstword foo bar)

produces the result `foo'. Although $(firstword text) is the same as $(word 1,text),

the firstword function is retained for its simplicity.

$(wildcard pattern)

The argument pattern is a �le name pattern, typically containing wildcard characters

(as in shell �le name patterns). The result of wildcard is a space-separated list of

the names of existing �les that match the pattern. See Section 4.2 [Using Wildcard

Characters in File Names], page 20.

8.4 The foreach Function

The foreach function is very di�erent from other functions. It causes one piece of text to be

used repeatedly, each time with a di�erent substitution performed on it. It resembles the for

command in the shell sh and the foreach command in the C-shell csh.

The syntax of the foreach function is:

$(foreach var,list,text)

The �rst two arguments, var and list, are expanded before anything else is done; note that the last

argument, text, is not expanded at the same time. Then for each word of the expanded value of

84 GNU make

list, the variable named by the expanded value of var is set to that word, and text is expanded.

Presumably text contains references to that variable, so its expansion will be di�erent each time.

The result is that text is expanded as many times as there are whitespace-separated words in

list. The multiple expansions of text are concatenated, with spaces between them, to make the

result of foreach.

This simple example sets the variable `files' to the list of all �les in the directories in the list

`dirs':

dirs := a b c d

files := $(foreach dir,$(dirs),$(wildcard $(dir)/*))

Here text is `$(wildcard $(dir)/*)'. The �rst repetition �nds the value `a' for dir, so

it produces the same result as `$(wildcard a/*)'; the second repetition produces the result of

`$(wildcard b/*)'; and the third, that of `$(wildcard c/*)'.

This example has the same result (except for setting `dirs') as the following example:

files := $(wildcard a/* b/* c/* d/*)

When text is complicated, you can improve readability by giving it a name, with an additional

variable:

find_files = $(wildcard $(dir)/*)

dirs := a b c d

files := $(foreach dir,$(dirs),$(find_files))

Here we use the variable find_files this way. We use plain `=' to de�ne a recursively-expanding

variable, so that its value contains an actual function call to be reexpanded under the control of

foreach; a simply-expanded variable would not do, since wildcard would be called only once at

the time of de�ning find_files.

The foreach function has no permanent e�ect on the variable var; its value and avor after

the foreach function call are the same as they were beforehand. The other values which are

taken from list are in e�ect only temporarily, during the execution of foreach. The variable var

is a simply-expanded variable during the execution of foreach. If var was unde�ned before the

foreach function call, it is unde�ned after the call. See Section 6.2 [The Two Flavors of Variables],

page 56.

Chapter 8: Functions for Transforming Text 85

origin
variables, origin
origin of variab

You must take care when using complex variable expressions that result in variable names

because many strange things are valid variable names, but are probably not what you intended.

For example,

files := $(foreach Es escrito en espanol!,b c ch,$(find_files))

might be useful if the value of find_files references the variable whose name is `Es escrito en

espanol!' (es un nombre bastante largo, no?), but it is more likely to be a mistake.

8.5 The origin Function

The origin function is unlike most other functions in that it does not operate on the values of

variables; it tells you something about a variable. Speci�cally, it tells you where it came from.

The syntax of the origin function is:

$(origin variable)

Note that variable is the name of a variable to inquire about; not a reference to that variable.

Therefore you would not normally use a `$' or parentheses when writing it. (You can, however, use

a variable reference in the name if you want the name not to be a constant.)

The result of this function is a string telling you how the variable variable was de�ned:

`undefined'

if variable was never de�ned.

`default'

if variable has a default de�nition, as is usual with CC and so on. See Section 10.3

[Variables Used by Implicit Rules], page 106. Note that if you have rede�ned a default

variable, the origin function will return the origin of the later de�nition.

`environment'

if variable was de�ned as an environment variable and the `-e' option is not turned on

(see Section 9.7 [Summary of Options], page 95).

`environment override'

if variable was de�ned as an environment variable and the `-e' option is turned on (see

Section 9.7 [Summary of Options], page 95).

86 GNU make

shell
commands, exp
backquotes
shell command,`file'

if variable was de�ned in a make�le.

`command line'

if variable was de�ned on the command line.

`override'

if variable was de�ned with an override directive in a make�le (see Section 6.7 [The

override Directive], page 66).

`automatic'

if variable is an automatic variable de�ned for the execution of the commands for each

rule (see Section 10.5.3 [Automatic Variables], page 112).

This information is primarily useful (other than for your curiosity) to determine if you want

to believe the value of a variable. For example, suppose you have a make�le `foo' that includes

another make�le `bar'. You want a variable bletch to be de�ned in `bar' if you run the command

`make -f bar', even if the environment contains a de�nition of bletch. However, if `foo' de�ned

bletch before including `bar', you do not want to override that de�nition. This could be done by

using an override directive in `foo', giving that de�nition precedence over the later de�nition in

`bar'; unfortunately, the override directive would also override any command line de�nitions. So,

`bar' could include:

ifdef bletch

ifeq "$(origin bletch)" "environment"

bletch = barf, gag, etc.

endif

endif

If bletch has been de�ned from the environment, this will rede�ne it.

If you want to override a previous de�nition of bletch if it came from the environment, even

under `-e', you could instead write:

ifneq "$(findstring environment,$(origin bletch))" ""

bletch = barf, gag, etc.

endif

Here the rede�nition takes place if `$(origin bletch)' returns either `environment' or

`environment override'. See Section 8.2 [Functions for String Substitution and Analysis], page 78.

8.6 The shell Function

Chapter 8: Functions for Transforming Text 87

The shell function is unlike any other function except the wildcard function (see Section 4.2.3

[The Function wildcard], page 22) in that it communicates with the world outside of make.

The shell function performs the same function that backquotes (``') perform in most shells:

it does command expansion. This means that it takes an argument that is a shell command

and returns the output of the command. The only processing make does on the result, before

substituting it into the surrounding text, is to convert newlines to spaces.

The commands run by calls to the shell function are run when the function calls are expanded.

In most cases, this is when the make�le is read in. The exception is that function calls in the

commands of the rules are expanded when the commands are run, and this applies to shell

function calls like all others.

Here are some examples of the use of the shell function:

contents := $(shell cat foo)

sets contents to the contents of the �le `foo', with a space (rather than a newline) separating each

line.

files := $(shell echo *.c)

sets files to the expansion of `*.c'. Unless make is using a very strange shell, this has the same

result as `$(wildcard *.c)'.

88 GNU make

Chapter 9: How to Run make 89

--file
--makefile
-f
goal, how to sp9 How toRun make

A make�le that says how to recompile a program can be used in more than one way. The

simplest use is to recompile every �le that is out of date. Usually, make�les are written so that if

you run make with no arguments, it does just that.

But you might want to update only some of the �les; you might want to use a di�erent compiler

or di�erent compiler options; you might want just to �nd out which �les are out of date without

changing them.

By giving arguments when you run make, you can do any of these things and many others.

The exit status of make is always one of three values:

0 The exit status is zero if make is successful.

2 The exit status is two if make encounters any errors. It will print messages describing

the particular errors.

1 The exit status is one if you use the `-q' ag and make determines that some target is

not already up to date. See Section 9.3 [Instead of Executing the Commands], page 91.

9.1 Arguments to Specify the Make�le

The way to specify the name of the make�le is with the `-f' or `--file' option (`--makefile'

also works). For example, `-f altmake' says to use the �le `altmake' as the make�le.

If you use the `-f' ag several times and follow each `-f' with an argument, all the speci�ed

�les are used jointly as make�les.

If you do not use the `-f' or `--file' ag, the default is to try `GNUmakefile', `makefile',

and `Makefile', in that order, and use the �rst of these three which exists or can be made (see

Chapter 3 [Writing Make�les], page 13).

9.2 Arguments to Specify the Goals

90 GNU make

all (standard t

The goals are the targets that make should strive ultimately to update. Other targets are

updated as well if they appear as dependencies of goals, or dependencies of dependencies of goals,

etc.

By default, the goal is the �rst target in the make�le (not counting targets that start with a

period). Therefore, make�les are usually written so that the �rst target is for compiling the entire

program or programs they describe. If the �rst rule in the make�le has several targets, only the

�rst target in the rule becomes the default goal, not the whole list.

You can specify a di�erent goal or goals with arguments to make. Use the name of the goal as

an argument. If you specify several goals, make processes each of them in turn, in the order you

name them.

Any target in the make�le may be speci�ed as a goal (unless it starts with `-' or contains an `=',

in which case it will be parsed as a switch or variable de�nition, respectively). Even targets not in

the make�le may be speci�ed, if make can �nd implicit rules that say how to make them.

One use of specifying a goal is if you want to compile only a part of the program, or only one

of several programs. Specify as a goal each �le that you wish to remake. For example, consider a

directory containing several programs, with a make�le that starts like this:

.PHONY: all

all: size nm ld ar as

If you are working on the program size, you might want to say `make size' so that only the

�les of that program are recompiled.

Another use of specifying a goal is to make �les that are not normally made. For example, there

may be a �le of debugging output, or a version of the program that is compiled specially for testing,

which has a rule in the make�le but is not a dependency of the default goal.

Another use of specifying a goal is to run the commands associated with a phony target (see

Section 4.4 [Phony Targets], page 27) or empty target (see Section 4.6 [Empty Target Files to Record

Events], page 30). Many make�les contain a phony target named `clean' which deletes everything

except source �les. Naturally, this is done only if you request it explicitly with `make clean'.

Following is a list of typical phony and empty target names. See Section 14.3 [Standard Targets],

page 133, for a detailed list of all the standard target names which GNU software packages use.

`all' Make all the top-level targets the make�le knows about.

Chapter 9: How to Run make 91

clean (standard
mostlyclean (s
distclean (sta
realclean (sta
clobber (stand
install (stand
print (standard
tar (standard t
shar (standard
dist (standard
TAGS (standard
check (standard
test (standard
execution, inste
commands, inst
--just-print
--dry-run
--recon
-n

`clean' Delete all �les that are normally created by running make.

`mostlyclean'

Like `clean', but may refrain from deleting a few �les that people normally don't

want to recompile. For example, the `mostlyclean' target for GCC does not delete

`libgcc.a', because recompiling it is rarely necessary and takes a lot of time.

`distclean'

`realclean'

`clobber' Any of these targets might be de�ned to delete more �les than `clean' does. For

example, this would delete con�guration �les or links that you would normally create

as preparation for compilation, even if the make�le itself cannot create these �les.

`install' Copy the executable �le into a directory that users typically search for commands; copy

any auxiliary �les that the executable uses into the directories where it will look for

them.

`print' Print listings of the source �les that have changed.

`tar' Create a tar �le of the source �les.

`shar' Create a shell archive (shar �le) of the source �les.

`dist' Create a distribution �le of the source �les. This might be a tar �le, or a shar �le, or

a compressed version of one of the above, or even more than one of the above.

`TAGS' Update a tags table for this program.

`check'

`test' Perform self tests on the program this make�le builds.

9.3 Instead of Executing the Commands

The make�le tells make how to tell whether a target is up to date, and how to update each target.

But updating the targets is not always what you want. Certain options specify other activities for

make.

`-n'

`--just-print'

`--dry-run'

`--recon'

\No-op". The activity is to print what commands would be used to make the targets

up to date, but not actually execute them.

92 GNU make

--touch
touching �les
target, touching
-t
--question
-q
question mode
--what-if
-W
--assume-new
--new-file
what if
�les, assuming n

`-t'

`--touch'

\Touch". The activity is to mark the targets as up to date without actually changing

them. In other words, make pretends to compile the targets but does not really change

their contents.

`-q'

`--question'

\Question". The activity is to �nd out silently whether the targets are up to date

already; but execute no commands in either case. In other words, neither compilation

nor output will occur.

`-W �le'

`--what-if=�le'

`--assume-new=�le'

`--new-file=�le'

\What if". Each `-W' ag is followed by a �le name. The given �les' modi�cation times

are recorded by make as being the present time, although the actual modi�cation times

remain the same. You can use the `-W' ag in conjunction with the `-n' ag to see what

would happen if you were to modify speci�c �les.

With the `-n' ag, make prints the commands that it would normally execute but does not

execute them.

With the `-t' ag, make ignores the commands in the rules and uses (in e�ect) the command

touch for each target that needs to be remade. The touch command is also printed, unless `-s' or

.SILENT is used. For speed, make does not actually invoke the program touch. It does the work

directly.

With the `-q' ag, make prints nothing and executes no commands, but the exit status code it

returns is zero if and only if the targets to be considered are already up to date. If the exit status

is one, then some updating needs to be done. If make encounters an error, the exit status is two,

so you can distinguish an error from a target that is not up to date.

It is an error to use more than one of these three ags in the same invocation of make.

The `-n', `-t', and `-q' options do not a�ect command lines that begin with `+' characters or

contain the strings `$(MAKE)' or `${MAKE}'. Note that only the line containing the `+' character

or the strings `$(MAKE)' or `${MAKE}' is run regardless of these options. Other lines in the same

rule are not run unless they too begin with `+' or contain `$(MAKE)' or `${MAKE}' (See Section 5.6.1

[How the MAKE Variable Works], page 46.)

Chapter 9: How to Run make 93

-o
--old-file
--assume-old
�les, assuming o
�les, avoiding re
recompilation, a

The `-W' ag provides two features:

� If you also use the `-n' or `-q' ag, you can see what make would do if you were to modify

some �les.

� Without the `-n' or `-q' ag, when make is actually executing commands, the `-W' ag can

direct make to act as if some �les had been modi�ed, without actually modifying the �les.

Note that the options `-p' and `-v' allow you to obtain other information about make or about

the make�les in use (see Section 9.7 [Summary of Options], page 95).

9.4 Avoiding Recompilation of Some Files

Sometimes you may have changed a source �le but you do not want to recompile all the �les

that depend on it. For example, suppose you add a macro or a declaration to a header �le that

many other �les depend on. Being conservative, make assumes that any change in the header �le

requires recompilation of all dependent �les, but you know that they do not need to be recompiled

and you would rather not waste the time waiting for them to compile.

If you anticipate the problem before changing the header �le, you can use the `-t' ag. This

ag tells make not to run the commands in the rules, but rather to mark the target up to date by

changing its last-modi�cation date. You would follow this procedure:

1. Use the command `make' to recompile the source �les that really need recompilation.

2. Make the changes in the header �les.

3. Use the command `make -t' to mark all the object �les as up to date. The next time you run

make, the changes in the header �les will not cause any recompilation.

If you have already changed the header �le at a time when some �les do need recompilation, it

is too late to do this. Instead, you can use the `-o �le' ag, which marks a speci�ed �le as \old"

(see Section 9.7 [Summary of Options], page 95). This means that the �le itself will not be remade,

and nothing else will be remade on its account. Follow this procedure:

1. Recompile the source �les that need compilation for reasons independent of the particular

header �le, with `make -o header�le'. If several header �les are involved, use a separate `-o'

option for each header �le.

2. Touch all the object �les with `make -t'.

94 GNU make

overriding varia
variables, overri
command line v
variables, comm9.5 Overriding Variables

An argument that contains `=' speci�es the value of a variable: `v=x' sets the value of the

variable v to x. If you specify a value in this way, all ordinary assignments of the same variable in

the make�le are ignored; we say they have been overridden by the command line argument.

The most common way to use this facility is to pass extra ags to compilers. For example,

in a properly written make�le, the variable CFLAGS is included in each command that runs the C

compiler, so a �le `foo.c' would be compiled something like this:

cc -c $(CFLAGS) foo.c

Thus, whatever value you set for CFLAGS a�ects each compilation that occurs. The make�le

probably speci�es the usual value for CFLAGS, like this:

CFLAGS=-g

Each time you run make, you can override this value if you wish. For example, if you say `make

CFLAGS='-g -O'', each C compilation will be done with `cc -c -g -O'. (This illustrates how you

can use quoting in the shell to enclose spaces and other special characters in the value of a variable

when you override it.)

The variable CFLAGS is only one of many standard variables that exist just so that you can change

them this way. See Section 10.3 [Variables Used by Implicit Rules], page 106, for a complete list.

You can also program the make�le to look at additional variables of your own, giving the user

the ability to control other aspects of how the make�le works by changing the variables.

When you override a variable with a command argument, you can de�ne either a recursively-

expanded variable or a simply-expanded variable. The examples shown above make a recursively-

expanded variable; to make a simply-expanded variable, write `:=' instead of `='. But, unless you

want to include a variable reference or function call in the value that you specify, it makes no

di�erence which kind of variable you create.

There is one way that the make�le can change a variable that you have overridden. This is to

use the override directive, which is a line that looks like this: `override variable = value' (see

Section 6.7 [The override Directive], page 66).

Chapter 9: How to Run make 95

testing compila
compilation, tes
-k
--keep-going
options
ags
switches
-b
-m
-C
--directory

9.6 Testing the Compilation of a Program

Normally, when an error happens in executing a shell command, make gives up immediately,

returning a nonzero status. No further commands are executed for any target. The error implies

that the goal cannot be correctly remade, and make reports this as soon as it knows.

When you are compiling a program that you have just changed, this is not what you want.

Instead, you would rather that make try compiling every �le that can be tried, to show you as

many compilation errors as possible.

On these occasions, you should use the `-k' or `--keep-going' ag. This tells make to continue

to consider the other dependencies of the pending targets, remaking them if necessary, before it

gives up and returns nonzero status. For example, after an error in compiling one object �le, `make

-k' will continue compiling other object �les even though it already knows that linking them will be

impossible. In addition to continuing after failed shell commands, `make -k' will continue as much

as possible after discovering that it does not know how to make a target or dependency �le. This

will always cause an error message, but without `-k', it is a fatal error (see Section 9.7 [Summary

of Options], page 95).

The usual behavior of make assumes that your purpose is to get the goals up to date; once make

learns that this is impossible, it might as well report the failure immediately. The `-k' ag says

that the real purpose is to test as much as possible of the changes made in the program, perhaps

to �nd several independent problems so that you can correct them all before the next attempt to

compile. This is why Emacs' M-x compile command passes the `-k' ag by default.

9.7 Summary of Options

Here is a table of all the options make understands:

`-b'

`-m' These options are ignored for compatibility with other versions of make.

`-C dir'

`--directory=dir'

Change to directory dir before reading the make�les. If multiple `-C' options are

speci�ed, each is interpreted relative to the previous one: `-C / -C etc' is equivalent

to `-C /etc'. This is typically used with recursive invocations of make (see Section 5.6

[Recursive Use of make], page 46).

96 GNU make

-d
--debug
-e
--environment
-f
--file
--makefile
-h
--help
-i
--ignore-erro
-I
--include-dir
-j
--jobs
-k
--keep-going

`-d'

`--debug'

Print debugging information in addition to normal processing. The debugging infor-

mation says which �les are being considered for remaking, which �le-times are being

compared and with what results, which �les actually need to be remade, which implicit

rules are considered and which are applied|everything interesting about how make

decides what to do.

`-e'

`--environment-overrides'

Give variables taken from the environment precedence over variables from make�les.

See Section 6.9 [Variables from the Environment], page 68.

`-f �le'

`--file=�le'

`--makefile=�le'

Read the �le named �le as a make�le. See Chapter 3 [Writing Make�les], page 13.

`-h'

`--help'

Remind you of the options that make understands and then exit.

`-i'

`--ignore-errors'

Ignore all errors in commands executed to remake �les. See Section 5.4 [Errors in

Commands], page 44.

`-I dir'

`--include-dir=dir'

Speci�es a directory dir to search for included make�les. See Section 3.3 [Including

Other Make�les], page 14. If several `-I' options are used to specify several directories,

the directories are searched in the order speci�ed.

`-j [jobs]'

`--jobs=[jobs]'

Speci�es the number of jobs (commands) to run simultaneously. With no argument,

make runs as many jobs simultaneously as possible. If there is more than one `-j'

option, the last one is e�ective. See Section 5.3 [Parallel Execution], page 42, for more

information on how commands are run.

`-k'

`--keep-going'

Continue as much as possible after an error. While the target that failed, and those

that depend on it, cannot be remade, the other dependencies of these targets can be

processed all the same. See Section 9.6 [Testing the Compilation of a Program], page 95.

Chapter 9: How to Run make 97

-l
--load-averag
--max-load
-n
--just-print
--dry-run
--recon
-o
--old-file
--assume-old
-p
--print-data-
-q
--question
-r
--no-builtin-
-s

`-l [load]'

`--load-average[=load]'

`--max-load[=load]'

Speci�es that no new jobs (commands) should be started if there are other jobs running

and the load average is at least load (a oating-point number). With no argument,

removes a previous load limit. See Section 5.3 [Parallel Execution], page 42.

`-n'

`--just-print'

`--dry-run'

`--recon'

Print the commands that would be executed, but do not execute them. See Section 9.3

[Instead of Executing the Commands], page 91.

`-o �le'

`--old-file=�le'

`--assume-old=�le'

Do not remake the �le �le even if it is older than its dependencies, and do not remake

anything on account of changes in �le. Essentially the �le is treated as very old and its

rules are ignored. See Section 9.4 [Avoiding Recompilation of Some Files], page 93.

`-p'

`--print-data-base'

Print the data base (rules and variable values) that results from reading the make�les;

then execute as usual or as otherwise speci�ed. This also prints the version information

given by the `-v' switch (see below). To print the data base without trying to remake

any �les, use `make -p -f /dev/null'.

`-q'

`--question'

\Question mode". Do not run any commands, or print anything; just return an exit

status that is zero if the speci�ed targets are already up to date, one if any remaking

is required, or two if an error is encountered. See Section 9.3 [Instead of Executing the

Commands], page 91.

`-r'

`--no-builtin-rules'

Eliminate use of the built-in implicit rules (see Chapter 10 [Using Implicit Rules],

page 101). You can still de�ne your own by writing pattern rules (see Section 10.5

[De�ning and Rede�ning Pattern Rules], page 109). The `-r' option also clears out

the default list of su�xes for su�x rules (see Section 10.7 [Old-Fashioned Su�x Rules],

page 117). But you can still de�ne your own su�xes with a rule for .SUFFIXES, and

then de�ne your own su�x rules.

`-s'

98 GNU make

--silent
--quiet
-S
--no-keep-goi
--stop
-t
--touch
-v
--version
-w
--print-direc
--no-print-di
-W
--what-if
--new-file
--assume-new

`--silent'

`--quiet'

Silent operation; do not print the commands as they are executed. See Section 5.1

[Command Echoing], page 41.

`-S'

`--no-keep-going'

`--stop'

Cancel the e�ect of the `-k' option. This is never necessary except in a recursive make

where `-k' might be inherited from the top-level make via MAKEFLAGS (see Section 5.6

[Recursive Use of make], page 46) or if you set `-k' in MAKEFLAGS in your environment.

`-t'

`--touch'

Touch �les (mark them up to date without really changing them) instead of running

their commands. This is used to pretend that the commands were done, in order to

fool future invocations of make. See Section 9.3 [Instead of Executing the Commands],

page 91.

`-v'

`--version'

Print the version of the make program plus a copyright, a list of authors, and a notice

that there is no warranty; then exit.

`-w'

`--print-directory'

Print a message containing the working directory both before and after executing the

make�le. This may be useful for tracking down errors from complicated nests of recur-

sive make commands. See Section 5.6 [Recursive Use of make], page 46. (In practice,

you rarely need to specify this option since `make' does it for you; see Section 5.6.4

[The `--print-directory' Option], page 52.)

`--no-print-directory'

Disable printing of the working directory under -w. This option is useful when -

w is turned on automatically, but you do not want to see the extra messages. See

Section 5.6.4 [The `--print-directory' Option], page 52.

`-W �le'

`--what-if=�le'

`--new-file=�le'

`--assume-new=�le'

Pretend that the target �le has just been modi�ed. When used with the `-n' ag, this

shows you what would happen if you were to modify that �le. Without `-n', it is almost

the same as running a touch command on the given �le before running make, except

Chapter 9: How to Run make 99

--warn-undefi
variables, warni
unde�ned varia

that the modi�cation time is changed only in the imagination of make. See Section 9.3

[Instead of Executing the Commands], page 91.

`--warn-undefined-variables'

Issue a warning message whenever make sees a reference to an unde�ned variable. This

can be helpful when you are trying to debug make�les which use variables in complex

ways.

100 GNU make

Chapter 10: Using Implicit Rules 101

implicit rule
rule, implicit
implicit rule, ho
rule, implicit, h10 Using Implicit Rules

Certain standard ways of remaking target �les are used very often. For example, one customary

way to make an object �le is from a C source �le using the C compiler, cc.

Implicit rules tell make how to use customary techniques so that you do not have to specify them

in detail when you want to use them. For example, there is an implicit rule for C compilation.

File names determine which implicit rules are run. For example, C compilation typically takes a

`.c' �le and makes a `.o' �le. So make applies the implicit rule for C compilation when it sees this

combination of �le name endings.

A chain of implicit rules can apply in sequence; for example, make will remake a `.o' �le from a

`.y' �le by way of a `.c' �le. See Section 10.4 [Chains of Implicit Rules], page 108.

The built-in implicit rules use several variables in their commands so that, by changing the

values of the variables, you can change the way the implicit rule works. For example, the variable

CFLAGS controls the ags given to the C compiler by the implicit rule for C compilation. See

Section 10.3 [Variables Used by Implicit Rules], page 106.

You can de�ne your own implicit rules by writing pattern rules. See Section 10.5 [De�ning and

Rede�ning Pattern Rules], page 109.

Su�x rules are a more limited way to de�ne implicit rules. Pattern rules are more general

and clearer, but su�x rules are retained for compatibility. See Section 10.7 [Old-Fashioned Su�x

Rules], page 117.

10.1 Using Implicit Rules

To allow make to �nd a customary method for updating a target �le, all you have to do is refrain

from specifying commands yourself. Either write a rule with no command lines, or don't write a

rule at all. Then make will �gure out which implicit rule to use based on which kind of source �le

exists or can be made.

For example, suppose the make�le looks like this:

foo : foo.o bar.o

cc -o foo foo.o bar.o $(CFLAGS) $(LDFLAGS)

102 GNU make

Because you mention `foo.o' but do not give a rule for it, make will automatically look for an

implicit rule that tells how to update it. This happens whether or not the �le `foo.o' currently

exists.

If an implicit rule is found, it can supply both commands and one or more dependencies (the

source �les). You would want to write a rule for `foo.o' with no command lines if you need to

specify additional dependencies, such as header �les, that the implicit rule cannot supply.

Each implicit rule has a target pattern and dependency patterns. There may be many implicit

rules with the same target pattern. For example, numerous rules make `.o' �les: one, from a `.c'

�le with the C compiler; another, from a `.p' �le with the Pascal compiler; and so on. The rule

that actually applies is the one whose dependencies exist or can be made. So, if you have a �le

`foo.c', make will run the C compiler; otherwise, if you have a �le `foo.p', make will run the Pascal

compiler; and so on.

Of course, when you write the make�le, you know which implicit rule you want make to use, and

you know it will choose that one because you know which possible dependency �les are supposed to

exist. See Section 10.2 [Catalogue of Implicit Rules], page 103, for a catalogue of all the prede�ned

implicit rules.

Above, we said an implicit rule applies if the required dependencies \exist or can be made".

A �le \can be made" if it is mentioned explicitly in the make�le as a target or a dependency, or

if an implicit rule can be recursively found for how to make it. When an implicit dependency is

the result of another implicit rule, we say that chaining is occurring. See Section 10.4 [Chains of

Implicit Rules], page 108.

In general, make searches for an implicit rule for each target, and for each double-colon rule,

that has no commands. A �le that is mentioned only as a dependency is considered a target whose

rule speci�es nothing, so implicit rule search happens for it. See Section 10.8 [Implicit Rule Search

Algorithm], page 119, for the details of how the search is done.

Note that explicit dependencies do not inuence implicit rule search. For example, consider this

explicit rule:

foo.o: foo.p

The dependency on `foo.p' does not necessarily mean that make will remake `foo.o' according to

the implicit rule to make an object �le, a `.o' �le, from a Pascal source �le, a `.p' �le. For example,

if `foo.c' also exists, the implicit rule to make an object �le from a C source �le is used instead,

Chapter 10: Using Implicit Rules 103

implicit rule, pr
rule, implicit, p
C, rule to comp
cc
gcc
.o
.c
C++, rule to com
g++
.C
.cc
Pascal, rule to c
pc
.p
Fortran, rule to
Ratfor, rule to c
f77
.f
.r
.F

because it appears before the Pascal rule in the list of prede�ned implicit rules (see Section 10.2

[Catalogue of Implicit Rules], page 103).

If you do not want an implicit rule to be used for a target that has no commands, you can give

that target empty commands by writing a semicolon (see Section 5.8 [De�ning Empty Commands],

page 54).

10.2 Catalogue of Implicit Rules

Here is a catalogue of prede�ned implicit rules which are always available unless the make�le

explicitly overrides or cancels them. See Section 10.5.6 [Canceling Implicit Rules], page 116, for

information on canceling or overriding an implicit rule. The `-r' or `--no-builtin-rules' option

cancels all prede�ned rules.

Not all of these rules will always be de�ned, even when the `-r' option is not given. Many of

the prede�ned implicit rules are implemented in make as su�x rules, so which ones will be de�ned

depends on the su�x list (the list of dependencies of the special target .SUFFIXES). The default

su�x list is: .out, .a, .ln, .o, .c, .cc, .C, .p, .f, .F, .r, .y, .l, .s, .S, .mod, .sym, .def, .h,

.info, .dvi, .tex, .texinfo, .texi, .txinfo, .w, .ch .web, .sh, .elc, .el. All of the implicit

rules described below whose dependencies have one of these su�xes are actually su�x rules. If you

modify the su�x list, the only prede�ned su�x rules in e�ect will be those named by one or two of

the su�xes that are on the list you specify; rules whose su�xes fail to be on the list are disabled.

See Section 10.7 [Old-Fashioned Su�x Rules], page 117, for full details on su�x rules.

Compiling C programs

`n.o' is made automatically from `n.c' with a command of the form `$(CC) -c

$(CPPFLAGS) $(CFLAGS)'.

Compiling C++ programs

`n.o' is made automatically from `n.cc' or `n.C' with a command of the form `$(CXX)

-c $(CPPFLAGS) $(CXXFLAGS)'. We encourage you to use the su�x `.cc' for C++ source

�les instead of `.C'.

Compiling Pascal programs

`n.o' is made automatically from `n.p' with the command `$(PC) -c $(PFLAGS)'.

Compiling Fortran and Ratfor programs

`n.o' is made automatically from `n.r', `n.F' or `n.f' by running the Fortran compiler.

The precise command used is as follows:

`.f' `$(FC) -c $(FFLAGS)'.

104 GNU make

Modula-2, rule
m2c
.sym
.def
.mod
assembly, rule t
as
.s
.S
linking, prede�n
ld
.o

`.F' `$(FC) -c $(FFLAGS) $(CPPFLAGS)'.

`.r' `$(FC) -c $(FFLAGS) $(RFLAGS)'.

Preprocessing Fortran and Ratfor programs

`n.f' is made automatically from `n.r' or `n.F'. This rule runs just the preprocessor

to convert a Ratfor or preprocessable Fortran program into a strict Fortran program.

The precise command used is as follows:

`.F' `$(FC) -F $(CPPFLAGS) $(FFLAGS)'.

`.r' `$(FC) -F $(FFLAGS) $(RFLAGS)'.

Compiling Modula-2 programs

`n.sym' is made from `n.def' with a command of the form `$(M2C) $(M2FLAGS)

$(DEFFLAGS)'. `n.o' is made from `n.mod'; the form is: `$(M2C) $(M2FLAGS) $(MODFLAGS)'.

Assembling and preprocessing assembler programs

`n.o' is made automatically from `n.s' by running the assembler, as. The precise

command is `$(AS) $(ASFLAGS)'.

`n.s' is made automatically from `n.S' by running the C preprocessor, cpp. The precise

command is `$(CPP) $(CPPFLAGS)'.

Linking a single object �le

`n' is made automatically from `n.o' by running the linker (usually called ld) via the

C compiler. The precise command used is `$(CC) $(LDFLAGS) n.o $(LOADLIBES)'.

This rule does the right thing for a simple program with only one source �le. It will also

do the right thing if there are multiple object �les (presumably coming from various

other source �les), one of which has a name matching that of the executable �le. Thus,

x: y.o z.o

when `x.c', `y.c' and `z.c' all exist will execute:

cc -c x.c -o x.o

cc -c y.c -o y.o

cc -c z.c -o z.o

cc x.o y.o z.o -o x

rm -f x.o

rm -f y.o

rm -f z.o

In more complicated cases, such as when there is no object �le whose name derives

from the executable �le name, you must write an explicit command for linking.

Each kind of �le automatically made into `.o' object �les will be automatically linked

by using the compiler (`$(CC)', `$(FC)' or `$(PC)'; the C compiler `$(CC)' is used to

assemble `.s' �les) without the `-c' option. This could be done by using the `.o' object

�les as intermediates, but it is faster to do the compiling and linking in one step, so

that's how it's done.

Chapter 10: Using Implicit Rules 105

yacc
Yacc, rule to ru
.y
lex
Lex, rule to run
.l
lint
lint, rule to ru
.ln
TEX, rule to run
Web, rule to ru
tex
cweave
weave
tangle
ctangle
.dvi
.tex
.web
.w
.ch
Texinfo, rule to
Info, rule to for
texi2dvi
makeinfo
.texinfo
.info
.texi
.txinfo
RCS, rule to ex
co
,v (RCS �le ext
SCCS, rule to e
get
s. (SCCS �le p
.sh

Yacc for C programs

`n.c' is made automatically from `n.y' by running Yacc with the command `$(YACC)

$(YFLAGS)'.

Lex for C programs

`n.c' is made automatically from `n.l' by by running Lex. The actual command is

`$(LEX) $(LFLAGS)'.

Lex for Ratfor programs

`n.r' is made automatically from `n.l' by by running Lex. The actual command is

`$(LEX) $(LFLAGS)'.

The convention of using the same su�x `.l' for all Lex �les regardless of whether they

produce C code or Ratfor code makes it impossible for make to determine automatically

which of the two languages you are using in any particular case. If make is called upon

to remake an object �le from a `.l' �le, it must guess which compiler to use. It will

guess the C compiler, because that is more common. If you are using Ratfor, make

sure make knows this by mentioning `n.r' in the make�le. Or, if you are using Ratfor

exclusively, with no C �les, remove `.c' from the list of implicit rule su�xes with:

.SUFFIXES:

.SUFFIXES: .o .r .f .l : : :

Making Lint Libraries from C, Yacc, or Lex programs

`n.ln' is made from `n.c' by running lint. The precise command is `$(LINT) $(LINTFLAGS) $(CPPFLAG

The same command is used on the C code produced from `n.y' or `n.l'.

TEX and Web

`n.dvi' is made from `n.tex' with the command `$(TEX)'. `n.tex' is made from

`n.web' with `$(WEAVE)', or from `n.w' (and from `n.ch' if it exists or can be made)

with `$(CWEAVE)'. `n.p' is made from `n.web' with `$(TANGLE)' and `n.c' is made from

`n.w' (and from `n.ch' if it exists or can be made) with `$(CTANGLE)'.

Texinfo and Info

`n.dvi' is made from `n.texinfo', `n.texi', or `n.txinfo', with the command

`$(TEXI2DVI) $(TEXI2DVI_FLAGS)'. `n.info' is made from `n.texinfo', `n.texi',

or `n.txinfo', with the command `$(MAKEINFO) $(MAKEINFO_FLAGS)'.

RCS Any �le `n' is extracted if necessary from an RCS �le named either `n,v' or `RCS/n,v'.

The precise command used is `$(CO) $(COFLAGS)'. `n' will not be extracted from RCS

if it already exists, even if the RCS �le is newer. The rules for RCS are terminal

(see Section 10.5.5 [Match-Anything Pattern Rules], page 114), so RCS �les cannot be

generated from another source; they must actually exist.

SCCS Any �le `n' is extracted if necessary from an SCCS �le named either `s.n' or `SCCS/s.n'.

The precise command used is `$(GET) $(GFLAGS)'. The rules for SCCS are terminal

(see Section 10.5.5 [Match-Anything Pattern Rules], page 114), so SCCS �les cannot

be generated from another source; they must actually exist.

106 GNU make

OUTPUT_OPTION
ags for compil

For the bene�t of SCCS, a �le `n' is copied from `n.sh' and made executable (by

everyone). This is for shell scripts that are checked into SCCS. Since RCS preserves

the execution permission of a �le, you do not need to use this feature with RCS.

We recommend that you avoid using of SCCS. RCS is widely held to be superior, and

is also free. By choosing free software in place of comparable (or inferior) proprietary

software, you support the free software movement.

Usually, you want to change only the variables listed in the table above, which are documented

in the following section.

However, the commands in built-in implicit rules actually use variables such as COMPILE.c,

LINK.p, and PREPROCESS.S, whose values contain the commands listed above.

make follows the convention that the rule to compile a `.x' source �le uses the variable

COMPILE.x. Similarly, the rule to produce an executable from a `.x' �le uses LINK.x; and

the rule to preprocess a `.x' �le uses PREPROCESS.x.

Every rule that produces an object �le uses the variable OUTPUT_OPTION. make de�nes this

variable either to contain `-o $@', or to be empty, depending on a compile-time option. You need

the `-o' option to ensure that the output goes into the right �le when the source �le is in a di�erent

directory, as when using VPATH (see Section 4.3 [Directory Search], page 23). However, compilers

on some systems do not accept a `-o' switch for object �les. If you use such a system, and use

VPATH, some compilations will put their output in the wrong place. A possible workaround for this

problem is to give OUTPUT_OPTION the value `; mv $*.o $@'.

10.3 Variables Used by Implicit Rules

The commands in built-in implicit rules make liberal use of certain prede�ned variables. You

can alter these variables in the make�le, with arguments to make, or in the environment to alter

how the implicit rules work without rede�ning the rules themselves.

For example, the command used to compile a C source �le actually says `$(CC) -c $(CFLAGS)

$(CPPFLAGS)'. The default values of the variables used are `cc' and nothing, resulting in the

command `cc -c'. By rede�ning `CC' to `ncc', you could cause `ncc' to be used for all C compilations

performed by the implicit rule. By rede�ning `CFLAGS' to be `-g', you could pass the `-g' option

to each compilation. All implicit rules that do C compilation use `$(CC)' to get the program name

for the compiler and all include `$(CFLAGS)' among the arguments given to the compiler.

Chapter 10: Using Implicit Rules 107

AR
ar
AS
as
CC
cc
CXX
g++
CO
co
CPP
FC
f77
GET
get
LEX
lex
PC
pc
YACC
yacc
YACCR
MAKEINFO
makeinfo
TEX
tex
TEXI2DVI
texi2dvi
WEAVE
weave
CWEAVE
cweave
TANGLE
tangle
CTANGLE
ctangle
RM
rm

The variables used in implicit rules fall into two classes: those that are names of programs (like

CC) and those that contain arguments for the programs (like CFLAGS). (The \name of a program"

may also contain some command arguments, but it must start with an actual executable program

name.) If a variable value contains more than one argument, separate them with spaces.

Here is a table of variables used as names of programs in built-in rules:

AR Archive-maintaining program; default `ar'.

AS Program for doing assembly; default `as'.

CC Program for compiling C programs; default `cc'.

CXX Program for compiling C++ programs; default `g++'.

CO Program for extracting a �le from RCS; default `co'.

CPP Program for running the C preprocessor, with results to standard output; default `$(CC)

-E'.

FC Program for compiling or preprocessing Fortran and Ratfor programs; default `f77'.

GET Program for extracting a �le from SCCS; default `get'.

LEX Program to use to turn Lex grammars into C programs or Ratfor programs; default

`lex'.

PC Program for compiling Pascal programs; default `pc'.

YACC Program to use to turn Yacc grammars into C programs; default `yacc'.

YACCR Program to use to turn Yacc grammars into Ratfor programs; default `yacc -r'.

MAKEINFO Program to convert a Texinfo source �le into an Info �le; default `makeinfo'.

TEX Program to make TEX dvi �les from TEX source; default `tex'.

TEXI2DVI Program to make TEX dvi �les from Texinfo source; default `texi2dvi'.

WEAVE Program to translate Web into TEX; default `weave'.

CWEAVE Program to translate C Web into TEX; default `cweave'.

TANGLE Program to translate Web into Pascal; default `tangle'.

CTANGLE Program to translate C Web into C; default `ctangle'.

RM Command to remove a �le; default `rm -f'.

Here is a table of variables whose values are additional arguments for the programs above. The

default values for all of these is the empty string, unless otherwise noted.

108 GNU make

ARFLAGS
ASFLAGS
CFLAGS
CXXFLAGS
COFLAGS
CPPFLAGS
FFLAGS
GFLAGS
LDFLAGS
LFLAGS
PFLAGS
RFLAGS
YFLAGS
chains of rules
rule, implicit, ch
intermediate �le
�les, intermedia

ARFLAGS Flags to give the archive-maintaining program; default `rv'.

ASFLAGS Extra ags to give to the assembler (when explicitly invoked on a `.s' or `.S' �le).

CFLAGS Extra ags to give to the C compiler.

CXXFLAGS Extra ags to give to the C++ compiler.

COFLAGS Extra ags to give to the RCS co program.

CPPFLAGS Extra ags to give to the C preprocessor and programs that use it (the C and Fortran

compilers).

FFLAGS Extra ags to give to the Fortran compiler.

GFLAGS Extra ags to give to the SCCS get program.

LDFLAGS Extra ags to give to compilers when they are supposed to invoke the linker, `ld'.

LFLAGS Extra ags to give to Lex.

PFLAGS Extra ags to give to the Pascal compiler.

RFLAGS Extra ags to give to the Fortran compiler for Ratfor programs.

YFLAGS Extra ags to give to Yacc.

10.4 Chains of Implicit Rules

Sometimes a �le can be made by a sequence of implicit rules. For example, a �le `n.o' could be

made from `n.y' by running �rst Yacc and then cc. Such a sequence is called a chain.

If the �le `n.c' exists, or is mentioned in the make�le, no special searching is required: make

�nds that the object �le can be made by C compilation from `n.c'; later on, when considering how

to make `n.c', the rule for running Yacc is used. Ultimately both `n.c' and `n.o' are updated.

However, even if `n.c' does not exist and is not mentioned, make knows how to envision it as the

missing link between `n.o' and `n.y'! In this case, `n.c' is called an intermediate �le. Once make

has decided to use the intermediate �le, it is entered in the data base as if it had been mentioned

in the make�le, along with the implicit rule that says how to create it.

Intermediate �les are remade using their rules just like all other �les. The di�erence is that

the intermediate �le is deleted when make is �nished. Therefore, the intermediate �le which did

not exist before make also does not exist after make. The deletion is reported to you by printing

a `rm -f' command that shows what make is doing. (You can list the target pattern of an implicit

rule (such as `%.o') as a dependency of the special target .PRECIOUS to preserve intermediate �les

Chapter 10: Using Implicit Rules 109

intermediate �le
preserving inter
preserving with
.PRECIOUS inte
pattern rule
rule, pattern

made by implicit rules whose target patterns match that �le's name; see Section 5.5 [Interrupts],

page 45.)

A chain can involve more than two implicit rules. For example, it is possible to make a �le `foo'

from `RCS/foo.y,v' by running RCS, Yacc and cc. Then both `foo.y' and `foo.c' are intermediate

�les that are deleted at the end.

No single implicit rule can appear more than once in a chain. This means that make will not

even consider such a ridiculous thing as making `foo' from `foo.o.o' by running the linker twice.

This constraint has the added bene�t of preventing any in�nite loop in the search for an implicit

rule chain.

There are some special implicit rules to optimize certain cases that would otherwise be handled

by rule chains. For example, making `foo' from `foo.c' could be handled by compiling and linking

with separate chained rules, using `foo.o' as an intermediate �le. But what actually happens is

that a special rule for this case does the compilation and linking with a single cc command. The

optimized rule is used in preference to the step-by-step chain because it comes earlier in the ordering

of rules.

10.5 De�ning and Rede�ning Pattern Rules

You de�ne an implicit rule by writing a pattern rule. A pattern rule looks like an ordinary rule,

except that its target contains the character `%' (exactly one of them). The target is considered a

pattern for matching �le names; the `%' can match any nonempty substring, while other characters

match only themselves. The dependencies likewise use `%' to show how their names relate to the

target name.

Thus, a pattern rule `%.o : %.c' says how to make any �le `stem.o' from another �le `stem.c'.

Note that expansion using `%' in pattern rules occurs after any variable or function expansions,

which take place when the make�le is read. See Chapter 6 [How to Use Variables], page 55, and

Chapter 8 [Functions for Transforming Text], page 77.

10.5.1 Introduction to Pattern Rules

110 GNU make

target pattern,
%, in pattern ru
dependency pat
multiple targets
target, multiple

A pattern rule contains the character `%' (exactly one of them) in the target; otherwise, it looks

exactly like an ordinary rule. The target is a pattern for matching �le names; the `%' matches any

nonempty substring, while other characters match only themselves.

For example, `%.c' as a pattern matches any �le name that ends in `.c'. `s.%.c' as a pattern

matches any �le name that starts with `s.', ends in `.c' and is at least �ve characters long. (There

must be at least one character to match the `%'.) The substring that the `%' matches is called the

stem.

`%' in a dependency of a pattern rule stands for the same stem that was matched by the `%' in

the target. In order for the pattern rule to apply, its target pattern must match the �le name under

consideration, and its dependency patterns must name �les that exist or can be made. These �les

become dependencies of the target.

Thus, a rule of the form

%.o : %.c ; command: : :

speci�es how to make a �le `n.o', with another �le `n.c' as its dependency, provided that `n.c'

exists or can be made.

There may also be dependencies that do not use `%'; such a dependency attaches to every �le

made by this pattern rule. These unvarying dependencies are useful occasionally.

A pattern rule need not have any dependencies that contain `%', or in fact any dependencies at

all. Such a rule is e�ectively a general wildcard. It provides a way to make any �le that matches

the target pattern. See Section 10.6 [Last Resort], page 116.

Pattern rules may have more than one target. Unlike normal rules, this does not act as many

di�erent rules with the same dependencies and commands. If a pattern rule has multiple targets,

make knows that the rule's commands are responsible for making all of the targets. The commands

are executed only once to make all the targets. When searching for a pattern rule to match a

target, the target patterns of a rule other than the one that matches the target in need of a rule

are incidental: make worries only about giving commands and dependencies to the �le presently

in question. However, when this �le's commands are run, the other targets are marked as having

been updated themselves.

The order in which pattern rules appear in the make�le is important since this is the order

in which they are considered. Of equally applicable rules, only the �rst one found is used. The

Chapter 10: Using Implicit Rules 111

pattern rules, o
order of pattern

rules you write take precedence over those that are built in. Note however, that a rule whose

dependencies actually exist or are mentioned always takes priority over a rule with dependencies

that must be made by chaining other implicit rules.

10.5.2 Pattern Rule Examples

Here are some examples of pattern rules actually prede�ned in make. First, the rule that compiles

`.c' �les into `.o' �les:

%.o : %.c

$(CC) -c $(CFLAGS) $(CPPFLAGS) $< -o $@

de�nes a rule that can make any �le `x.o' from `x.c'. The command uses the automatic variables

`$@' and `$<' to substitute the names of the target �le and the source �le in each case where the

rule applies (see Section 10.5.3 [Automatic Variables], page 112).

Here is a second built-in rule:

% :: RCS/%,v

$(CO) $(COFLAGS) $<

de�nes a rule that can make any �le `x' whatsoever from a corresponding �le `x,v' in the subdirec-

tory `RCS'. Since the target is `%', this rule will apply to any �le whatever, provided the appropriate

dependency �le exists. The double colon makes the rule terminal, which means that its dependency

may not be an intermediate �le (see Section 10.5.5 [Match-Anything Pattern Rules], page 114).

This pattern rule has two targets:

%.tab.c %.tab.h: %.y

bison -d $<

This tells make that the command `bison -d x.y' will make both `x.tab.c' and `x.tab.h'. If the

�le `foo' depends on the �les `parse.tab.o' and `scan.o' and the �le `scan.o' depends on the

�le `parse.tab.h', when `parse.y' is changed, the command `bison -d parse.y' will be executed

only once, and the dependencies of both `parse.tab.o' and `scan.o' will be satis�ed. (Presumably

the �le `parse.tab.o' will be recompiled from `parse.tab.c' and the �le `scan.o' from `scan.c',

while `foo' is linked from `parse.tab.o', `scan.o', and its other dependencies, and it will execute

happily ever after.)

112 GNU make

automatic varia
variables, autom
variables, and im
$@
@ (automatic va
$%
% (automatic va
$<
< (automatic va
$?
? (automatic va
dependencies, li
list of changed
$^
^ (automatic va
dependencies, li
list of all depen
$+
+ (automatic va
$*
* (automatic va
stem, variable f

10.5.3 Automatic Variables

Suppose you are writing a pattern rule to compile a `.c' �le into a `.o' �le: how do you write

the `cc' command so that it operates on the right source �le name? You cannot write the name in

the command, because the name is di�erent each time the implicit rule is applied.

What you do is use a special feature of make, the automatic variables. These variables have

values computed afresh for each rule that is executed, based on the target and dependencies of the

rule. In this example, you would use `$@' for the object �le name and `$<' for the source �le name.

Here is a table of automatic variables:

$@ The �le name of the target of the rule. If the target is an archive member, then

`$@' is the name of the archive �le. In a pattern rule that has multiple targets (see

Section 10.5.1 [Introduction to Pattern Rules], page 109), `$@' is the name of whichever

target caused the rule's commands to be run.

$% The target member name, when the target is an archive member. See Chapter 11

[Archives], page 121. For example, if the target is `foo.a(bar.o)' then `$%' is `bar.o'

and `$@' is `foo.a'. `$%' is empty when the target is not an archive member.

$< The name of the �rst dependency. If the target got its commands from an implicit rule,

this will be the �rst dependency added by the implicit rule (see Chapter 10 [Implicit

Rules], page 101).

$? The names of all the dependencies that are newer than the target, with spaces between

them. For dependencies which are archive members, only the member named is used

(see Chapter 11 [Archives], page 121).

$^ The names of all the dependencies, with spaces between them. For dependencies which

are archive members, only the member named is used (see Chapter 11 [Archives],

page 121). A target has only one dependency on each other �le it depends on, no

matter how many times each �le is listed as a dependency. So if you list a dependency

more than once for a target, the value of $^ contains just one copy of the name.

$+ This is like `$^', but dependencies listed more than once are duplicated in the order

they were listed in the make�le. This is primarily useful for use in linking commands

where it is meaningful to repeat library �le names in a particular order.

$* The stem with which an implicit rule matches (see Section 10.5.4 [How Patterns Match],

page 114). If the target is `dir/a.foo.b' and the target pattern is `a.%.b' then the

stem is `dir/foo'. The stem is useful for constructing names of related �les.

In a static pattern rule, the stem is part of the �le name that matched the `%' in the

target pattern.

Chapter 10: Using Implicit Rules 113

$(@D)
@D (automatic v
$(@F)
@F (automatic v
$(*D)
*D (automatic v
$(*F)
*F (automatic v
$(%D)
%D (automatic v
$(%F)
%F (automatic v
$(<D)
<D (automatic v
$(<F)
<F (automatic v

In an explicit rule, there is no stem; so `$*' cannot be determined in that way. Instead,

if the target name ends with a recognized su�x (see Section 10.7 [Old-Fashioned Su�x

Rules], page 117), `$*' is set to the target name minus the su�x. For example, if

the target name is `foo.c', then `$*' is set to `foo', since `.c' is a su�x. GNU make

does this bizarre thing only for compatibility with other implementations of make. You

should generally avoid using `$*' except in implicit rules or static pattern rules.

If the target name in an explicit rule does not end with a recognized su�x, `$*' is set

to the empty string for that rule.

`$?' is useful even in explicit rules when you wish to operate on only the dependencies that have

changed. For example, suppose that an archive named `lib' is supposed to contain copies of several

object �les. This rule copies just the changed object �les into the archive:

lib: foo.o bar.o lose.o win.o

ar r lib $?

Of the variables listed above, four have values that are single �le names, and two have values

that are lists of �le names. These six have variants that get just the �le's directory name or just

the �le name within the directory. The variant variables' names are formed by appending `D' or `F',

respectively. These variants are semi-obsolete in GNU make since the functions dir and notdir

can be used to get a similar e�ect (see Section 8.3 [Functions for File Names], page 81). Note,

however, that the `F' variants all omit the trailing slash which always appears in the output of the

dir function. Here is a table of the variants:

`$(@D)' The directory part of the �le name of the target, with the trailing slash removed. If

the value of `$@' is `dir/foo.o' then `$(@D)' is `dir'. This value is `.' if `$@' does not

contain a slash.

`$(@F)' The �le-within-directory part of the �le name of the target. If the value of `$@' is

`dir/foo.o' then `$(@F)' is `foo.o'. `$(@F)' is equivalent to `$(notdir $@)'.

`$(*D)'

`$(*F)' The directory part and the �le-within-directory part of the stem; `dir' and `foo' in

this example.

`$(%D)'

`$(%F)' The directory part and the �le-within-directory part of the target archive member

name. This makes sense only for archive member targets of the form `archive(member)'

and is useful only when member may contain a directory name. (See Section 11.1

[Archive Members as Targets], page 121.)

`$(<D)'

114 GNU make

$(^D)
^D (automatic v
$(^F)
^F (automatic v
$(?D)
?D (automatic v
$(?F)
?F (automatic v
stem
match-anything
terminal rule

`$(<F)' The directory part and the �le-within-directory part of the �rst dependency.

`$(^D)'

`$(^F)' Lists of the directory parts and the �le-within-directory parts of all dependencies.

`$(?D)'

`$(?F)' Lists of the directory parts and the �le-within-directory parts of all dependencies that

are newer than the target.

Note that we use a special stylistic convention when we talk about these automatic variables; we

write \the value of `$<'", rather than \the variable <" as we would write for ordinary variables such

as objects and CFLAGS. We think this convention looks more natural in this special case. Please

do not assume it has a deep signi�cance; `$<' refers to the variable named < just as `$(CFLAGS)'

refers to the variable named CFLAGS. You could just as well use `$(<)' in place of `$<'.

10.5.4 How Patterns Match

A target pattern is composed of a `%' between a pre�x and a su�x, either or both of which may

be empty. The pattern matches a �le name only if the �le name starts with the pre�x and ends

with the su�x, without overlap. The text between the pre�x and the su�x is called the stem.

Thus, when the pattern `%.o' matches the �le name `test.o', the stem is `test'. The pattern rule

dependencies are turned into actual �le names by substituting the stem for the character `%'. Thus,

if in the same example one of the dependencies is written as `%.c', it expands to `test.c'.

When the target pattern does not contain a slash (and it usually does not), directory names

in the �le names are removed from the �le name before it is compared with the target pre�x and

su�x. After the comparison of the �le name to the target pattern, the directory names, along with

the slash that ends them, are added on to the dependency �le names generated from the pattern

rule's dependency patterns and the �le name. The directories are ignored only for the purpose of

�nding an implicit rule to use, not in the application of that rule. Thus, `e%t' matches the �le name

`src/eat', with `src/a' as the stem. When dependencies are turned into �le names, the directories

from the stem are added at the front, while the rest of the stem is substituted for the `%'. The stem

`src/a' with a dependency pattern `c%r' gives the �le name `src/car'.

10.5.5 Match-Anything Pattern Rules

When a pattern rule's target is just `%', it matches any �le name whatever. We call these rules

match-anything rules. They are very useful, but it can take a lot of time for make to think about

Chapter 10: Using Implicit Rules 115

them, because it must consider every such rule for each �le name listed either as a target or as a

dependency.

Suppose the make�le mentions `foo.c'. For this target, make would have to consider making it

by linking an object �le `foo.c.o', or by C compilation-and-linking in one step from `foo.c.c', or

by Pascal compilation-and-linking from `foo.c.p', and many other possibilities.

We know these possibilities are ridiculous since `foo.c' is a C source �le, not an executable. If

make did consider these possibilities, it would ultimately reject them, because �les such as `foo.c.o'

and `foo.c.p' would not exist. But these possibilities are so numerous that make would run very

slowly if it had to consider them.

To gain speed, we have put various constraints on the way make considers match-anything rules.

There are two di�erent constraints that can be applied, and each time you de�ne a match-anything

rule you must choose one or the other for that rule.

One choice is to mark the match-anything rule as terminal by de�ning it with a double colon.

When a rule is terminal, it does not apply unless its dependencies actually exist. Dependencies that

could be made with other implicit rules are not good enough. In other words, no further chaining

is allowed beyond a terminal rule.

For example, the built-in implicit rules for extracting sources from RCS and SCCS �les are

terminal; as a result, if the �le `foo.c,v' does not exist, make will not even consider trying to make

it as an intermediate �le from `foo.c,v.o' or from `RCS/SCCS/s.foo.c,v'. RCS and SCCS �les

are generally ultimate source �les, which should not be remade from any other �les; therefore, make

can save time by not looking for ways to remake them.

If you do not mark the match-anything rule as terminal, then it is nonterminal. A nonterminal

match-anything rule cannot apply to a �le name that indicates a speci�c type of data. A �le name

indicates a speci�c type of data if some non-match-anything implicit rule target matches it.

For example, the �le name `foo.c' matches the target for the pattern rule `%.c : %.y' (the rule

to run Yacc). Regardless of whether this rule is actually applicable (which happens only if there is a

�le `foo.y'), the fact that its target matches is enough to prevent consideration of any nonterminal

match-anything rules for the �le `foo.c'. Thus, make will not even consider trying to make `foo.c'

as an executable �le from `foo.c.o', `foo.c.c', `foo.c.p', etc.

116 GNU make

last-resort defau
default rules, la

The motivation for this constraint is that nonterminal match-anything rules are used for making

�les containing speci�c types of data (such as executable �les) and a �le name with a recognized

su�x indicates some other speci�c type of data (such as a C source �le).

Special built-in dummy pattern rules are provided solely to recognize certain �le names so that

nonterminal match-anything rules will not be considered. These dummy rules have no dependencies

and no commands, and they are ignored for all other purposes. For example, the built-in implicit

rule

%.p :

exists to make sure that Pascal source �les such as `foo.p' match a speci�c target pattern and

thereby prevent time from being wasted looking for `foo.p.o' or `foo.p.c'.

Dummy pattern rules such as the one for `%.p' are made for every su�x listed as valid for use

in su�x rules (see Section 10.7 [Old-Fashioned Su�x Rules], page 117).

10.5.6 Canceling Implicit Rules

You can override a built-in implicit rule (or one you have de�ned yourself) by de�ning a new

pattern rule with the same target and dependencies, but di�erent commands. When the new rule

is de�ned, the built-in one is replaced. The new rule's position in the sequence of implicit rules is

determined by where you write the new rule.

You can cancel a built-in implicit rule by de�ning a pattern rule with the same target and

dependencies, but no commands. For example, the following would cancel the rule that runs the

assembler:

%.o : %.s

10.6 De�ning Last-Resort Default Rules

You can de�ne a last-resort implicit rule by writing a terminal match-anything pattern rule

with no dependencies (see Section 10.5.5 [Match-Anything Rules], page 114). This is just like any

other pattern rule; the only thing special about it is that it will match any target. So such a rule's

commands are used for all targets and dependencies that have no commands of their own and for

which no other implicit rule applies.

Chapter 10: Using Implicit Rules 117

.DEFAULT
old-fashioned su
su�x rule

For example, when testing a make�le, you might not care if the source �les contain real data,

only that they exist. Then you might do this:

%::

touch $@

to cause all the source �les needed (as dependencies) to be created automatically.

You can instead de�ne commands to be used for targets for which there are no rules at all, even

ones which don't specify commands. You do this by writing a rule for the target .DEFAULT. Such a

rule's commands are used for all dependencies which do not appear as targets in any explicit rule,

and for which no implicit rule applies. Naturally, there is no .DEFAULT rule unless you write one.

If you use .DEFAULT with no commands or dependencies:

.DEFAULT:

the commands previously stored for .DEFAULT are cleared. Then make acts as if you had never

de�ned .DEFAULT at all.

If you do not want a target to get the commands from a match-anything pattern rule or

.DEFAULT, but you also do not want any commands to be run for the target, you can give it

empty commands (see Section 5.8 [De�ning Empty Commands], page 54).

You can use a last-resort rule to override part of another make�le. See Section 3.6 [Overriding

Part of Another Make�le], page 18.

10.7 Old-Fashioned Su�x Rules

Su�x rules are the old-fashioned way of de�ning implicit rules for make. Su�x rules are ob-

solete because pattern rules are more general and clearer. They are supported in GNU make for

compatibility with old make�les. They come in two kinds: double-su�x and single-su�x.

A double-su�x rule is de�ned by a pair of su�xes: the target su�x and the source su�x. It

matches any �le whose name ends with the target su�x. The corresponding implicit dependency is

made by replacing the target su�x with the source su�x in the �le name. A two-su�x rule whose

target and source su�xes are `.o' and `.c' is equivalent to the pattern rule `%.o : %.c'.

118 GNU make

.SUFFIXES

A single-su�x rule is de�ned by a single su�x, which is the source su�x. It matches any �le

name, and the corresponding implicit dependency name is made by appending the source su�x. A

single-su�x rule whose source su�x is `.c' is equivalent to the pattern rule `% : %.c'.

Su�x rule de�nitions are recognized by comparing each rule's target against a de�ned list of

known su�xes. When make sees a rule whose target is a known su�x, this rule is considered a

single-su�x rule. When make sees a rule whose target is two known su�xes concatenated, this rule

is taken as a double-su�x rule.

For example, `.c' and `.o' are both on the default list of known su�xes. Therefore, if you de�ne

a rule whose target is `.c.o', make takes it to be a double-su�x rule with source su�x `.c' and

target su�x `.o'. Here is the old-fashioned way to de�ne the rule for compiling a C source �le:

.c.o:

$(CC) -c $(CFLAGS) $(CPPFLAGS) -o $@ $<

Su�x rules cannot have any dependencies of their own. If they have any, they are treated as

normal �les with funny names, not as su�x rules. Thus, the rule:

.c.o: foo.h

$(CC) -c $(CFLAGS) $(CPPFLAGS) -o $@ $<

tells how to make the �le `.c.o' from the dependency �le `foo.h', and is not at all like the pattern

rule:

%.o: %.c foo.h

$(CC) -c $(CFLAGS) $(CPPFLAGS) -o $@ $<

which tells how to make `.o' �les from `.c' �les, and makes all `.o' �les using this pattern rule also

depend on `foo.h'.

Su�x rules with no commands are also meaningless. They do not remove previous rules as do

pattern rules with no commands (see Section 10.5.6 [Canceling Implicit Rules], page 116). They

simply enter the su�x or pair of su�xes concatenated as a target in the data base.

The known su�xes are simply the names of the dependencies of the special target .SUFFIXES.

You can add your own su�xes by writing a rule for .SUFFIXES that adds more dependencies, as in:

.SUFFIXES: .hack .win

Chapter 10: Using Implicit Rules 119

SUFFIXES
implicit rule, se
search algorithm

which adds `.hack' and `.win' to the end of the list of su�xes.

If you wish to eliminate the default known su�xes instead of just adding to them, write a rule for

.SUFFIXES with no dependencies. By special dispensation, this eliminates all existing dependencies

of .SUFFIXES. You can then write another rule to add the su�xes you want. For example,

.SUFFIXES: # Delete the default su�xes

.SUFFIXES: .c .o .h # De�ne our su�x list

The `-r' or `--no-builtin-rules' ag causes the default list of su�xes to be empty.

The variable SUFFIXES is de�ned to the default list of su�xes before make reads any make�les.

You can change the list of su�xes with a rule for the special target .SUFFIXES, but that does not

alter this variable.

10.8 Implicit Rule Search Algorithm

Here is the procedure make uses for searching for an implicit rule for a target t. This procedure

is followed for each double-colon rule with no commands, for each target of ordinary rules none

of which have commands, and for each dependency that is not the target of any rule. It is also

followed recursively for dependencies that come from implicit rules, in the search for a chain of

rules.

Su�x rules are not mentioned in this algorithm because su�x rules are converted to equivalent

pattern rules once the make�les have been read in.

For an archive member target of the form `archive(member)', the following algorithm is run

twice, �rst using the entire target name t, and second using `(member)' as the target t if the �rst

run found no rule.

1. Split t into a directory part, called d, and the rest, called n. For example, if t is `src/foo.o',

then d is `src/' and n is `foo.o'.

2. Make a list of all the pattern rules one of whose targets matches t or n. If the target pattern

contains a slash, it is matched against t; otherwise, against n.

3. If any rule in that list is not a match-anything rule, then remove all nonterminal match-anything

rules from the list.

4. Remove from the list all rules with no commands.

120 GNU make

5. For each pattern rule in the list:

a. Find the stem s, which is the nonempty part of t or n matched by the `%' in the target

pattern.

b. Compute the dependency names by substituting s for `%'; if the target pattern does not

contain a slash, append d to the front of each dependency name.

c. Test whether all the dependencies exist or ought to exist. (If a �le name is mentioned in

the make�le as a target or as an explicit dependency, then we say it ought to exist.)

If all dependencies exist or ought to exist, or there are no dependencies, then this rule

applies.

6. If no pattern rule has been found so far, try harder. For each pattern rule in the list:

a. If the rule is terminal, ignore it and go on to the next rule.

b. Compute the dependency names as before.

c. Test whether all the dependencies exist or ought to exist.

d. For each dependency that does not exist, follow this algorithm recursively to see if the

dependency can be made by an implicit rule.

e. If all dependencies exist, ought to exist, or can be made by implicit rules, then this rule

applies.

7. If no implicit rule applies, the rule for .DEFAULT, if any, applies. In that case, give t the same

commands that .DEFAULT has. Otherwise, there are no commands for t.

Once a rule that applies has been found, for each target pattern of the rule other than the one

that matched t or n, the `%' in the pattern is replaced with s and the resultant �le name is stored

until the commands to remake the target �le t are executed. After these commands are executed,

each of these stored �le names are entered into the data base and marked as having been updated

and having the same update status as the �le t.

When the commands of a pattern rule are executed for t, the automatic variables are set corre-

sponding to the target and dependencies. See Section 10.5.3 [Automatic Variables], page 112.

Chapter 11: Using make to Update Archive Files 121

archive
archive member
wildcard, in arc

11 Using make to Update Archive Files

Archive �les are �les containing named sub�les called members; they are maintained with the

program ar and their main use is as subroutine libraries for linking.

11.1 Archive Members as Targets

An individual member of an archive �le can be used as a target or dependency in make. You

specify the member named member in archive �le archive as follows:

archive(member)

This construct is available only in targets and dependencies, not in commands! Most programs that

you might use in commands do not support this syntax and cannot act directly on archive members.

Only ar and other programs speci�cally designed to operate on archives can do so. Therefore, valid

commands to update an archive member target probably must use ar. For example, this rule says

to create a member `hack.o' in archive `foolib' by copying the �le `hack.o':

foolib(hack.o) : hack.o

ar cr foolib hack.o

In fact, nearly all archive member targets are updated in just this way and there is an implicit

rule to do it for you. Note: The `c' ag to ar is required if the archive �le does not already exist.

To specify several members in the same archive, you can write all the member names together

between the parentheses. For example:

foolib(hack.o kludge.o)

is equivalent to:

foolib(hack.o) foolib(kludge.o)

You can also use shell-style wildcards in an archive member reference. See Section 4.2 [Us-

ing Wildcard Characters in File Names], page 20. For example, `foolib(*.o)' expands to all

existing members of the `foolib' archive whose names end in `.o'; perhaps `foolib(hack.o)

foolib(kludge.o)'.

122 GNU make

__.SYMDEF
updating archiv
archive symbol
symbol director
directories, upd

11.2 Implicit Rule for Archive Member Targets

Recall that a target that looks like `a(m)' stands for the member named m in the archive �le a.

When make looks for an implicit rule for such a target, as a special feature it considers implicit

rules that match `(m)', as well as those that match the actual target `a(m)'.

This causes one special rule whose target is `(%)' to match. This rule updates the target `a(m)'

by copying the �le m into the archive. For example, it will update the archive member target

`foo.a(bar.o)' by copying the �le `bar.o' into the archive `foo.a' as a member named `bar.o'.

When this rule is chained with others, the result is very powerful. Thus, `make "foo.a(bar.o)"'

(the quotes are needed to protect the `(' and `)' from being interpreted specially by the shell) in

the presence of a �le `bar.c' is enough to cause the following commands to be run, even without

a make�le:

cc -c bar.c -o bar.o

ar r foo.a bar.o

rm -f bar.o

Here make has envisioned the �le `bar.o' as an intermediate �le. See Section 10.4 [Chains of Implicit

Rules], page 108.

Implicit rules such as this one are written using the automatic variable `$%'. See Section 10.5.3

[Automatic Variables], page 112.

An archive member name in an archive cannot contain a directory name, but it may be useful

in a make�le to pretend that it does. If you write an archive member target `foo.a(dir/file.o)',

make will perform automatic updating with this command:

ar r foo.a dir/file.o

which has the e�ect of copying the �le `dir/file.o' into a member named `file.o'. In connection

with such usage, the automatic variables %D and %F may be useful.

11.2.1 Updating Archive Symbol Directories

Chapter 11: Using make to Update Archive Files 123

archive, and pa
parallel executio
archive, and -j
-j, and archive
su�x rule, for a
archive, su�x r
library archive,
.a (archives)

An archive �le that is used as a library usually contains a special member named `__.SYMDEF'

that contains a directory of the external symbol names de�ned by all the other members. After you

update any other members, you need to update `__.SYMDEF' so that it will summarize the other

members properly. This is done by running the ranlib program:

ranlib archive�le

Normally you would put this command in the rule for the archive �le, and make all the members

of the archive �le dependencies of that rule. For example,

libfoo.a: libfoo.a(x.o) libfoo.a(y.o) : : :

ranlib libfoo.a

The e�ect of this is to update archive members `x.o', `y.o', etc., and then update the symbol

directory member `__.SYMDEF' by running ranlib. The rules for updating the members are not

shown here; most likely you can omit them and use the implicit rule which copies �les into the

archive, as described in the preceding section.

This is not necessary when using the GNU ar program, which updates the `__.SYMDEF' member

automatically.

11.3 Dangers When Using Archives

It is important to be careful when using parallel execution (the -j switch; see Section 5.3 [Parallel

Execution], page 42) and archives. If multiple ar commands run at the same time on the same

archive �le, they will not know about each other and can corrupt the �le.

Possibly a future version of make will provide a mechanism to circumvent this problem by

serializing all commands that operate on the same archive �le. But for the time being, you must

either write your make�les to avoid this problem in some other way, or not use -j.

11.4 Su�x Rules for Archive Files

You can write a special kind of su�x rule for dealing with archive �les. See Section 10.7 [Su�x

Rules], page 117, for a full explanation of su�x rules. Archive su�x rules are obsolete in GNU

make, because pattern rules for archives are a more general mechanism (see Section 11.2 [Archive

Update], page 122). But they are retained for compatibility with other makes.

124 GNU make

To write a su�x rule for archives, you simply write a su�x rule using the target su�x `.a' (the

usual su�x for archive �les). For example, here is the old-fashioned su�x rule to update a library

archive from C source �les:

.c.a:

$(CC) $(CFLAGS) $(CPPFLAGS) -c $< -o $*.o

$(AR) r $@ $*.o

$(RM) $*.o

This works just as if you had written the pattern rule:

(%.o): %.c

$(CC) $(CFLAGS) $(CPPFLAGS) -c $< -o $*.o

$(AR) r $@ $*.o

$(RM) $*.o

In fact, this is just what make does when it sees a su�x rule with `.a' as the target su�x.

Any double-su�x rule `.x.a' is converted to a pattern rule with the target pattern `(%.o)' and a

dependency pattern of `%.x'.

Since you might want to use `.a' as the su�x for some other kind of �le, make also converts

archive su�x rules to pattern rules in the normal way (see Section 10.7 [Su�x Rules], page 117).

Thus a double-su�x rule `.x.a' produces two pattern rules: `(%.o): %.x' and `%.a: %.x'.

Chapter 12: Features of GNU make 125

features of GNU
portability
compatibility

12 Features of GNU make

Here is a summary of the features of GNU make, for comparison with and credit to other versions

of make. We consider the features of make in 4.2 BSD systems as a baseline. If you are concerned

with writing portable make�les, you should use only the features of make not listed here or in

Chapter 13 [Missing], page 129.

Many features come from the version of make in System V.

� The VPATH variable and its special meaning. See Section 4.3 [Searching Directories for Depen-

dencies], page 23. This feature exists in System V make, but is undocumented. It is documented

in 4.3 BSD make (which says it mimics System V's VPATH feature).

� Included make�les. See Section 3.3 [Including Other Make�les], page 14. Allowing multiple

�les to be included with a single directive is a GNU extension.

� Variables are read from and communicated via the environment. See Section 6.9 [Variables

from the Environment], page 68.

� Options passed through the variable MAKEFLAGS to recursive invocations of make. See Sec-

tion 5.6.3 [Communicating Options to a Sub-make], page 50.

� The automatic variable $% is set to the member name in an archive reference. See Section 10.5.3

[Automatic Variables], page 112.

� The automatic variables $@, $*, $<, $%, and $? have corresponding forms like $(@F) and

$(@D). We have generalized this to $^ as an obvious extension. See Section 10.5.3 [Automatic

Variables], page 112.

� Substitution variable references. See Section 6.1 [Basics of Variable References], page 55.

� The command-line options `-b' and `-m', accepted and ignored. In System V make, these

options actually do something.

� Execution of recursive commands to run make via the variable MAKE even if `-n', `-q' or `-t' is

speci�ed. See Section 5.6 [Recursive Use of make], page 46.

� Support for su�x `.a' in su�x rules. See Section 11.4 [Archive Su�x Rules], page 123. This

feature is obsolete in GNU make, because the general feature of rule chaining (see Section 10.4

[Chains of Implicit Rules], page 108) allows one pattern rule for installing members in an

archive (see Section 11.2 [Archive Update], page 122) to be su�cient.

� The arrangement of lines and backslash-newline combinations in commands is retained when

the commands are printed, so they appear as they do in the make�le, except for the stripping

of initial whitespace.

The following features were inspired by various other versions of make. In some cases it is unclear

exactly which versions inspired which others.

126 GNU make

� Pattern rules using `%'. This has been implemented in several versions of make. We're not

sure who invented it �rst, but it's been spread around a bit. See Section 10.5 [De�ning and

Rede�ning Pattern Rules], page 109.

� Rule chaining and implicit intermediate �les. This was implemented by Stu Feldman in his

version of make for AT&T Eighth Edition Research Unix, and later by Andrew Hume of AT&T

Bell Labs in his mk program (where he terms it \transitive closure"). We do not really know if

we got this from either of them or thought it up ourselves at the same time. See Section 10.4

[Chains of Implicit Rules], page 108.

� The automatic variable $^ containing a list of all dependencies of the current target. We

did not invent this, but we have no idea who did. See Section 10.5.3 [Automatic Variables],

page 112. The automatic variable $+ is a simple extension of $^.

� The \what if" ag (`-W' in GNU make) was (as far as we know) invented by Andrew Hume in

mk. See Section 9.3 [Instead of Executing the Commands], page 91.

� The concept of doing several things at once (parallelism) exists in many incarnations of make

and similar programs, though not in the System V or BSD implementations. See Section 5.2

[Command Execution], page 42.

� Modi�ed variable references using pattern substitution come from SunOS 4. See Section 6.1

[Basics of Variable References], page 55. This functionality was provided in GNU make by the

patsubst function before the alternate syntax was implemented for compatibility with SunOS

4. It is not altogether clear who inspired whom, since GNU make had patsubst before SunOS

4 was released.

� The special signi�cance of `+' characters preceding command lines (see Section 9.3 [Instead of

Executing the Commands], page 91) is mandated by IEEE Standard 1003.2-1992 (POSIX.2).

� The `+=' syntax to append to the value of a variable comes from SunOS 4 make. See Section 6.6

[Appending More Text to Variables], page 64.

� The syntax `archive(mem1 mem2: : :)' to list multiple members in a single archive �le comes

from SunOS 4 make. See Section 11.1 [Archive Members], page 121.

� The -include directive to include make�les with no error for a nonexistent �le comes from

SunOS 4 make. (But note that SunOS 4 make does not allow multiple make�les to be speci�ed

in one -include directive.)

The remaining features are inventions new in GNU make:

� Use the `-v' or `--version' option to print version and copyright information.

� Use the `-h' or `--help' option to summarize the options to make.

� Simply-expanded variables. See Section 6.2 [The Two Flavors of Variables], page 56.

� Pass command-line variable assignments automatically through the variable MAKE to recursive

make invocations. See Section 5.6 [Recursive Use of make], page 46.

Chapter 12: Features of GNU make 127

� Use the `-C' or `--directory' command option to change directory. See Section 9.7 [Summary

of Options], page 95.

� Make verbatim variable de�nitions with define. See Section 6.8 [De�ning Variables Verbatim],

page 67.

� Declare phony targets with the special target .PHONY.

Andrew Hume of AT&T Bell Labs implemented a similar feature with a di�erent syntax in his

mk program. This seems to be a case of parallel discovery. See Section 4.4 [Phony Targets],

page 27.

� Manipulate text by calling functions. See Chapter 8 [Functions for Transforming Text], page 77.

� Use the `-o' or `--old-file' option to pretend a �le's modi�cation-time is old. See Section 9.4

[Avoiding Recompilation of Some Files], page 93.

� Conditional execution.

This feature has been implemented numerous times in various versions of make; it seems a

natural extension derived from the features of the C preprocessor and similar macro languages

and is not a revolutionary concept. See Chapter 7 [Conditional Parts of Make�les], page 71.

� Specify a search path for included make�les. See Section 3.3 [Including Other Make�les],

page 14.

� Specify extra make�les to read with an environment variable. See Section 3.4 [The Variable

MAKEFILES], page 16.

� Strip leading sequences of `./' from �le names, so that `./�le' and `�le' are considered to be

the same �le.

� Use a special search method for library dependencies written in the form `-lname'. See

Section 4.3.5 [Directory Search for Link Libraries], page 27.

� Allow su�xes for su�x rules (see Section 10.7 [Old-Fashioned Su�x Rules], page 117) to

contain any characters. In other versions of make, they must begin with `.' and not contain

any `/' characters.

� Keep track of the current level of make recursion using the variable MAKELEVEL. See Section 5.6

[Recursive Use of make], page 46.

� Specify static pattern rules. See Section 4.10 [Static Pattern Rules], page 34.

� Provide selective vpath search. See Section 4.3 [Searching Directories for Dependencies],

page 23.

� Provide computed variable references. See Section 6.1 [Basics of Variable References], page 55.

� Update make�les. See Section 3.5 [How Make�les Are Remade], page 16. System V make has

a very, very limited form of this functionality in that it will check out SCCS �les for make�les.

� Various new built-in implicit rules. See Section 10.2 [Catalogue of Implicit Rules], page 103.

� The built-in variable `MAKE_VERSION' gives the version number of make.

128 GNU make

Chapter 13: Incompatibilities and Missing Features 129

incompatibilitie
missing features
features, missin
* (automatic va13 Incompatibilities andMissing Features

The make programs in various other systems support a few features that are not implemented

in GNU make. The POSIX.2 standard (IEEE Standard 1003.2-1992) which speci�es make does not

require any of these features.

� A target of the form `�le((entry))' stands for a member of archive �le �le. The member is

chosen, not by name, but by being an object �le which de�nes the linker symbol entry.

This feature was not put into GNU make because of the nonmodularity of putting knowledge

into make of the internal format of archive �le symbol tables. See Section 11.2.1 [Updating

Archive Symbol Directories], page 122.

� Su�xes (used in su�x rules) that end with the character `~' have a special meaning to System

V make; they refer to the SCCS �le that corresponds to the �le one would get without the

`~'. For example, the su�x rule `.c~.o' would make the �le `n.o' from the SCCS �le `s.n.c'.

For complete coverage, a whole series of such su�x rules is required. See Section 10.7 [Old-

Fashioned Su�x Rules], page 117.

In GNU make, this entire series of cases is handled by two pattern rules for extraction from

SCCS, in combination with the general feature of rule chaining. See Section 10.4 [Chains of

Implicit Rules], page 108.

� In System V make, the string `$$@' has the strange meaning that, in the dependencies of a rule

with multiple targets, it stands for the particular target that is being processed.

This is not de�ned in GNU make because `$$' should always stand for an ordinary `$'.

It is possible to get this functionality through the use of static pattern rules (see Section 4.10

[Static Pattern Rules], page 34). The System V make rule:

$(targets): $$@.o lib.a

can be replaced with the GNU make static pattern rule:

$(targets): %: %.o lib.a

� In System V and 4.3 BSD make, �les found by VPATH search (see Section 4.3 [Searching Direc-

tories for Dependencies], page 23) have their names changed inside command strings. We feel

it is much cleaner to always use automatic variables and thus make this feature obsolete.

� In some Unix makes, the automatic variable $* appearing in the dependencies of a rule has

the amazingly strange \feature" of expanding to the full name of the target of that rule. We

cannot imagine what went on in the minds of Unix make developers to do this; it is utterly

inconsistent with the normal de�nition of $*.

� In some Unix makes, implicit rule search (see Chapter 10 [Using Implicit Rules], page 101) is

apparently done for all targets, not just those without commands. This means you can do:

foo.o:

cc -c foo.c

130 GNU make

and Unix make will intuit that `foo.o' depends on `foo.c'.

We feel that such usage is broken. The dependency properties of make are well-de�ned (for

GNU make, at least), and doing such a thing simply does not �t the model.

� GNU make does not include any built-in implicit rules for compiling or preprocessing EFL

programs. If we hear of anyone who is using EFL, we will gladly add them.

� It appears that in SVR4 make, a su�x rule can be speci�ed with no commands, and it is treated

as if it had empty commands (see Section 5.8 [Empty Commands], page 54). For example:

.c.a:

will override the built-in `.c.a' su�x rule.

We feel that it is cleaner for a rule without commands to always simply add to the dependency

list for the target. The above example can be easily rewritten to get the desired behavior in

GNU make:

.c.a: ;

� Some versions of make invoke the shell with the `-e' ag, except under `-k' (see Section 9.6

[Testing the Compilation of a Program], page 95). The `-e' ag tells the shell to exit as soon as

any program it runs returns a nonzero status. We feel it is cleaner to write each shell command

line to stand on its own and not require this special treatment.

Chapter 14: Make�le Conventions 131

make�le, conven
conventions for
standards for m

14 Make�le Conventions

This chapter describes conventions for writing the Make�les for GNU programs.

14.1 General Conventions for Make�les

Every Make�le should contain this line:

SHELL = /bin/sh

to avoid trouble on systems where the SHELL variable might be inherited from the environment.

(This is never a problem with GNU make.)

Di�erent make programs have incompatible su�x lists and implicit rules, and this sometimes

creates confusion or misbehavior. So it is a good idea to set the su�x list explicitly using only the

su�xes you need in the particular Make�le, like this:

.SUFFIXES:

.SUFFIXES: .c .o

The �rst line clears out the su�x list, the second introduces all su�xes which may be subject to

implicit rules in this Make�le.

Don't assume that `.' is in the path for command execution. When you need to run programs

that are a part of your package during the make, please make sure that it uses `./' if the program

is built as part of the make or `$(srcdir)/' if the �le is an unchanging part of the source code.

Without one of these pre�xes, the current search path is used.

The distinction between `./' and `$(srcdir)/' is important when using the `--srcdir' option

to `configure'. A rule of the form:

foo.1 : foo.man sedscript

sed -e sedscript foo.man > foo.1

will fail when the current directory is not the source directory, because `foo.man' and `sedscript'

are not in the current directory.

132 GNU make

When using GNU make, relying on `VPATH' to �nd the source �le will work in the case where

there is a single dependency �le, since the `make' automatic variable `$<' will represent the source

�le wherever it is. (Many versions of make set `$<' only in implicit rules.) A make�le target like

foo.o : bar.c

$(CC) -I. -I$(srcdir) $(CFLAGS) -c bar.c -o foo.o

should instead be written as

foo.o : bar.c

$(CC) -I. -I$(srcdir) $(CFLAGS) -c $< -o $@

in order to allow `VPATH' to work correctly. When the target has multiple dependencies, using an

explicit `$(srcdir)' is the easiest way to make the rule work well. For example, the target above

for `foo.1' is best written as:

foo.1 : foo.man sedscript

sed -e $(srcdir)/sedscript $(srcdir)/foo.man > $@

14.2 Utilities in Make�les

Write the Make�le commands (and any shell scripts, such as configure) to run in sh, not in

csh. Don't use any special features of ksh or bash.

The configure script and the Make�le rules for building and installation should not use any

utilities directly except these:

cat cmp cp echo egrep expr grep

ln mkdir mv pwd rm rmdir sed test touch

Stick to the generally supported options for these programs. For example, don't use `mkdir -p',

convenient as it may be, because most systems don't support it.

The Make�le rules for building and installation can also use compilers and related programs,

but should do so via make variables so that the user can substitute alternatives. Here are some of

the programs we mean:

ar bison cc flex install ld lex

Chapter 14: Make�le Conventions 133

make makeinfo ranlib texi2dvi yacc

Use the following make variables:

$(AR) $(BISON) $(CC) $(FLEX) $(INSTALL) $(LD) $(LEX)

$(MAKE) $(MAKEINFO) $(RANLIB) $(TEXI2DVI) $(YACC)

When you use ranlib, you should make sure nothing bad happens if the system does not have

ranlib. Arrange to ignore an error from that command, and print a message before the command

to tell the user that failure of the ranlib command does not mean a problem.

If you use symbolic links, you should implement a fallback for systems that don't have symbolic

links.

It is ok to use other utilities in Make�le portions (or scripts) intended only for particular systems

where you know those utilities to exist.

14.3 Standard Targets for Users

All GNU programs should have the following targets in their Make�les:

`all' Compile the entire program. This should be the default target. This target need not

rebuild any documentation �les; Info �les should normally be included in the distribu-

tion, and DVI �les should be made only when explicitly asked for.

`install' Compile the program and copy the executables, libraries, and so on to the �le names

where they should reside for actual use. If there is a simple test to verify that a program

is properly installed, this target should run that test.

The commands should create all the directories in which �les are to be installed, if they

don't already exist. This includes the directories speci�ed as the values of the variables

prefix and exec_prefix, as well as all subdirectories that are needed. One way to do

this is by means of an installdirs target as described below.

Use `-' before any command for installing a man page, so that make will ignore any

errors. This is in case there are systems that don't have the Unix man page documen-

tation system installed.

The way to install Info �les is to copy them into `$(infodir)' with $(INSTALL_DATA)

(see Section 14.4 [Command Variables], page 136), and then run the install-info

program if it is present. install-info is a script that edits the Info `dir' �le to add

134 GNU make

or update the menu entry for the given Info �le; it will be part of the Texinfo package.

Here is a sample rule to install an Info �le:

$(infodir)/foo.info: foo.info

There may be a newer info file in . than in srcdir.

-if test -f foo.info; then d=.; \

else d=$(srcdir); fi; \

$(INSTALL_DATA) $$d/foo.info $@; \

Run install-info only if it exists.

Use `if' instead of just prepending `-' to the

line so we notice real errors from install-info.

We use `$(SHELL) -c' because some shells do not

fail gracefully when there is an unknown command.

if $(SHELL) -c 'install-info --version' \

>/dev/null 2>&1; then \

install-info --infodir=$(infodir) $$d/foo.info; \

else true; fi

`uninstall'

Delete all the installed �les that the `install' target would create (but not the nonin-

stalled �les such as `make all' would create).

`clean'

Delete all �les from the current directory that are normally created by building the

program. Don't delete the �les that record the con�guration. Also preserve �les that

could be made by building, but normally aren't because the distribution comes with

them.

Delete `.dvi' �les here if they are not part of the distribution.

`distclean'

Delete all �les from the current directory that are created by con�guring or building the

program. If you have unpacked the source and built the program without creating any

other �les, `make distclean' should leave only the �les that were in the distribution.

`mostlyclean'

Like `clean', but may refrain from deleting a few �les that people normally don't

want to recompile. For example, the `mostlyclean' target for GCC does not delete

`libgcc.a', because recompiling it is rarely necessary and takes a lot of time.

`realclean'

Delete everything from the current directory that can be reconstructed with this Make-

�le. This typically includes everything deleted by distclean, plus more: C source �les

produced by Bison, tags tables, Info �les, and so on.

One exception, however: `make realclean' should not delete `configure' even if

`configure' can be remade using a rule in the Make�le. More generally, `make

realclean' should not delete anything that needs to exist in order to run `configure'

and then begin to build the program.

Chapter 14: Make�le Conventions 135

`TAGS' Update a tags table for this program.

`info' Generate any Info �les needed. The best way to write the rules is as follows:

info: foo.info

foo.info: foo.texi chap1.texi chap2.texi

$(MAKEINFO) $(srcdir)/foo.texi

You must de�ne the variable MAKEINFO in the Make�le. It should run the makeinfo

program, which is part of the Texinfo distribution.

`dvi' Generate DVI �les for all TeXinfo documentation. For example:

dvi: foo.dvi

foo.dvi: foo.texi chap1.texi chap2.texi

$(TEXI2DVI) $(srcdir)/foo.texi

You must de�ne the variable TEXI2DVI in the Make�le. It should run the program

texi2dvi, which is part of the Texinfo distribution. Alternatively, write just the de-

pendencies, and allow GNU Make to provide the command.

`dist' Create a distribution tar �le for this program. The tar �le should be set up so that

the �le names in the tar �le start with a subdirectory name which is the name of the

package it is a distribution for. This name can include the version number.

For example, the distribution tar �le of GCC version 1.40 unpacks into a subdirectory

named `gcc-1.40'.

The easiest way to do this is to create a subdirectory appropriately named, use ln or

cp to install the proper �les in it, and then tar that subdirectory.

The dist target should explicitly depend on all non-source �les that are in the dis-

tribution, to make sure they are up to date in the distribution. See section \Making

Releases" in GNU Coding Standards.

`check' Perform self-tests (if any). The user must build the program before running the tests,

but need not install the program; you should write the self-tests so that they work

when the program is built but not installed.

The following targets are suggested as conventional names, for programs in which they are

useful.

installcheck

Perform installation tests (if any). The user must build and install the program before

running the tests. You should not assume that `$(bindir)' is in the search path.

136 GNU make

installdirs

It's useful to add a target named `installdirs' to create the directories where �les are

installed, and their parent directories. There is a script called `mkinstalldirs' which

is convenient for this; �nd it in the Texinfo package.You can use a rule like this:

Make sure all installation directories (e.g. $(bindir))

actually exist by making them if necessary.

installdirs: mkinstalldirs

$(srcdir)/mkinstalldirs $(bindir) $(datadir) \

$(libdir) $(infodir) \

$(mandir)

14.4 Variables for Specifying Commands

Make�les should provide variables for overriding certain commands, options, and so on.

In particular, you should run most utility programs via variables. Thus, if you use Bison, have a

variable named BISON whose default value is set with `BISON = bison', and refer to it with $(BISON)

whenever you need to use Bison.

File management utilities such as ln, rm, mv, and so on, need not be referred to through variables

in this way, since users don't need to replace them with other programs.

Each program-name variable should come with an options variable that is used to supply options

to the program. Append `FLAGS' to the program-name variable name to get the options variable

name|for example, BISONFLAGS. (The name CFLAGS is an exception to this rule, but we keep it

because it is standard.) Use CPPFLAGS in any compilation command that runs the preprocessor,

and use LDFLAGS in any compilation command that does linking as well as in any direct use of ld.

If there are C compiler options that must be used for proper compilation of certain �les, do

not include them in CFLAGS. Users expect to be able to specify CFLAGS freely themselves. Instead,

arrange to pass the necessary options to the C compiler independently of CFLAGS, by writing them

explicitly in the compilation commands or by de�ning an implicit rule, like this:

CFLAGS = -g

ALL_CFLAGS = -I. $(CFLAGS)

.c.o:

$(CC) -c $(CPPFLAGS) $(ALL_CFLAGS) $<

Chapter 14: Make�le Conventions 137

Do include the `-g' option in CFLAGS, because that is not required for proper compilation. You

can consider it a default that is only recommended. If the package is set up so that it is compiled

with GCC by default, then you might as well include `-O' in the default value of CFLAGS as well.

Put CFLAGS last in the compilation command, after other variables containing compiler options,

so the user can use CFLAGS to override the others.

Every Make�le should de�ne the variable INSTALL, which is the basic command for installing a

�le into the system.

Every Make�le should also de�ne the variables INSTALL_PROGRAM and INSTALL_DATA. (The

default for each of these should be $(INSTALL).) Then it should use those variables as the commands

for actual installation, for executables and nonexecutables respectively. Use these variables as

follows:

$(INSTALL_PROGRAM) foo $(bindir)/foo

$(INSTALL_DATA) libfoo.a $(libdir)/libfoo.a

Always use a �le name, not a directory name, as the second argument of the installation commands.

Use a separate command for each �le to be installed.

14.5 Variables for Installation Directories

Installation directories should always be named by variables, so it is easy to install in a non-

standard place. The standard names for these variables are as follows.

These two variables set the root for the installation. All the other installation directories should

be subdirectories of one of these two, and nothing should be directly installed into these two

directories.

`prefix' A pre�x used in constructing the default values of the variables listed below. The

default value of prefix should be `/usr/local' (at least for now).

`exec_prefix'

A pre�x used in constructing the default values of some of the variables listed below.

The default value of exec_prefix should be $(prefix).

138 GNU make

Generally, $(exec_prefix) is used for directories that contain machine-speci�c �les

(such as executables and subroutine libraries), while $(prefix) is used directly for

other directories.

Executable programs are installed in one of the following directories.

`bindir' The directory for installing executable programs that users can run. This should nor-

mally be `/usr/local/bin', but write it as `$(exec_prefix)/bin'.

`sbindir' The directory for installing executable programs that can be run from the shell,

but are only generally useful to system administrators. This should normally be

`/usr/local/sbin', but write it as `$(exec_prefix)/sbin'.

`libexecdir'

The directory for installing executable programs to be run by other programs rather

than by users. This directory should normally be `/usr/local/libexec', but write it

as `$(exec_prefix)/libexec'.

Data �les used by the program during its execution are divided into categories in two ways.

� Some �les are normally modi�ed by programs; others are never normally modi�ed (though

users may edit some of these).

� Some �les are architecture-independent and can be shared by all machines at a site; some are

architecture-dependent and can be shared only by machines of the same kind and operating

system; others may never be shared between two machines.

This makes for six di�erent possibilities. However, we want to discourage the use of architecture-

dependent �les, aside from of object �les and libraries. It is much cleaner to make other data �les

architecture-independent, and it is generally not hard.

Therefore, here are the variables make�les should use to specify directories:

`datadir' The directory for installing read-only architecture independent data �les. This should

normally be `/usr/local/share', but write it as `$(prefix)/share'. As a special

exception, see `$(infodir)' and `$(includedir)' below.

`sysconfdir'

The directory for installing read-only data �les that pertain to a single machine{

that is to say, �les for con�guring a host. Mailer and network con�guration �les,

Chapter 14: Make�le Conventions 139

`/etc/passwd', and so forth belong here. All the �les in this directory should be ordi-

nary ASCII text �les. This directory should normally be `/usr/local/etc', but write

it as `$(prefix)/etc'.

Do not install executables in this directory (they probably belong in `$(libexecdir)'

or `$(sbindir))'. Also do not install �les that are modi�ed in the normal course

of their use (programs whose purpose is to change the con�guration of the system

excluded). Those probably belong in `$(localstatedir)'.

`sharedstatedir'

The directory for installing architecture-independent data �les which the programs

modify while they run. This should normally be `/usr/local/com', but write it as

`$(prefix)/com'.

`localstatedir'

The directory for installing data �les which the programs modify while they run, and

that pertain to one speci�c machine. Users should never need to modify �les in this

directory to con�gure the package's operation; put such con�guration information in

separate �les that go in `datadir' or `$(sysconfdir)'. `$(localstatedir)' should

normally be `/usr/local/var', but write it as `$(prefix)/var'.

`libdir' The directory for object �les and libraries of object code. Do not install executables

here, they probably belong in `$(libexecdir)' instead. The value of libdir should

normally be `/usr/local/lib', but write it as `$(exec_prefix)/lib'.

`infodir' The directory for installing the Info �les for this package. By default, it should be

`/usr/local/info', but it should be written as `$(prefix)/info'.

`includedir'

The directory for installing header �les to be included by user programs with the C

`#include' preprocessor directive. This should normally be `/usr/local/include',

but write it as `$(prefix)/include'.

Most compilers other than GCC do not look for header �les in `/usr/local/include'.

So installing the header �les this way is only useful with GCC. Sometimes this is not a

problem because some libraries are only really intended to work with GCC. But some

libraries are intended to work with other compilers. They should install their header

�les in two places, one speci�ed by includedir and one speci�ed by oldincludedir.

`oldincludedir'

The directory for installing `#include' header �les for use with compilers other than

GCC. This should normally be `/usr/include'.

The Make�le commands should check whether the value of oldincludedir is empty.

If it is, they should not try to use it; they should cancel the second installation of the

header �les.

140 GNU make

A package should not replace an existing header in this directory unless the header

came from the same package. Thus, if your Foo package provides a header �le `foo.h',

then it should install the header �le in the oldincludedir directory if either (1) there

is no `foo.h' there or (2) the `foo.h' that exists came from the Foo package.

To tell whether `foo.h' came from the Foo package, put a magic string in the �le|part

of a comment|and grep for that string.

Unix-style man pages are installed in one of the following:

`mandir' The directory for installing the man pages (if any) for this package. It should include

the su�x for the proper section of the manual|usually `1' for a utility. It will normally

be `/usr/local/man/man1', but you should write it as `$(prefix)/man/man1'.

`man1dir' The directory for installing section 1 man pages.

`man2dir' The directory for installing section 2 man pages.

`: : :' Use these names instead of `mandir' if the package needs to install man pages in more

than one section of the manual.

Don't make the primary documentation for any GNU software be a man page. Write

a manual in Texinfo instead. Man pages are just for the sake of people running GNU

software on Unix, which is a secondary application only.

`manext' The �le name extension for the installed man page. This should contain a period

followed by the appropriate digit; it should normally be `.1'.

`man1ext' The �le name extension for installed section 1 man pages.

`man2ext' The �le name extension for installed section 2 man pages.

`: : :' Use these names instead of `manext' if the package needs to install man pages in more

than one section of the manual.

And �nally, you should set the following variable:

`srcdir' The directory for the sources being compiled. The value of this variable is normally

inserted by the configure shell script.

For example:

Common prefix for installation directories.

NOTE: This directory must exist when you start the install.

prefix = /usr/local

Chapter 14: Make�le Conventions 141

exec_prefix = $(prefix)

Where to put the executable for the command `gcc'.

bindir = $(exec_prefix)/bin

Where to put the directories used by the compiler.

libexecdir = $(exec_prefix)/libexec

Where to put the Info files.

infodir = $(prefix)/info

If your program installs a large number of �les into one of the standard user-speci�ed directories,

it might be useful to group them into a subdirectory particular to that program. If you do this,

you should write the install rule to create these subdirectories.

Do not expect the user to include the subdirectory name in the value of any of the variables

listed above. The idea of having a uniform set of variable names for installation directories is to

enable the user to specify the exact same values for several di�erent GNU packages. In order for

this to be useful, all the packages must be designed so that they will work sensibly when the user

does so.

142 GNU make

Appendix A: Quick Reference 143

Appendix A Quick Reference

This appendix summarizes the directives, text manipulation functions, and special variables

which GNU make understands. See Section 4.7 [Special Targets], page 30, Section 10.2 [Catalogue

of Implicit Rules], page 103, and Section 9.7 [Summary of Options], page 95, for other summaries.

Here is a summary of the directives GNU make recognizes:

define variable

endef

De�ne a multi-line, recursively-expanded variable.

See Section 5.7 [Sequences], page 52.

ifdef variable

ifndef variable

ifeq (a,b)

ifeq "a" "b"

ifeq 'a' 'b'

ifneq (a,b)

ifneq "a" "b"

ifneq 'a' 'b'

else

endif

Conditionally evaluate part of the make�le.

See Chapter 7 [Conditionals], page 71.

include �le

Include another make�le.

See Section 3.3 [Including Other Make�les], page 14.

override variable = value

override variable := value

override variable += value

override define variable

endef

De�ne a variable, overriding any previous de�nition, even one from the command line.

See Section 6.7 [The override Directive], page 66.

export

Tell make to export all variables to child processes by default.

See Section 5.6.2 [Communicating Variables to a Sub-make], page 47.

144 GNU make

export variable

export variable = value

export variable := value

export variable += value

unexport variable

Tell make whether or not to export a particular variable to child processes.

See Section 5.6.2 [Communicating Variables to a Sub-make], page 47.

vpath pattern path

Specify a search path for �les matching a `%' pattern.

See Section 4.3.2 [The vpath Directive], page 24.

vpath pattern

Remove all search paths previously speci�ed for pattern.

vpath Remove all search paths previously speci�ed in any vpath directive.

Here is a summary of the text manipulation functions (see Chapter 8 [Functions], page 77):

$(subst from,to,text)

Replace from with to in text.

See Section 8.2 [Functions for String Substitution and Analysis], page 78.

$(patsubst pattern,replacement,text)

Replace words matching pattern with replacement in text.

See Section 8.2 [Functions for String Substitution and Analysis], page 78.

$(strip string)

Remove excess whitespace characters from string.

See Section 8.2 [Functions for String Substitution and Analysis], page 78.

$(findstring �nd,text)

Locate �nd in text.

See Section 8.2 [Functions for String Substitution and Analysis], page 78.

$(filter pattern: : :,text)

Select words in text that match one of the pattern words.

See Section 8.2 [Functions for String Substitution and Analysis], page 78.

$(filter-out pattern: : :,text)

Select words in text that do not match any of the pattern words.

See Section 8.2 [Functions for String Substitution and Analysis], page 78.

$(sort list)

Sort the words in list lexicographically, removing duplicates.

See Section 8.2 [Functions for String Substitution and Analysis], page 78.

Appendix A: Quick Reference 145

$(dir names: : :)

Extract the directory part of each �le name.

See Section 8.3 [Functions for File Names], page 81.

$(notdir names: : :)

Extract the non-directory part of each �le name.

See Section 8.3 [Functions for File Names], page 81.

$(suffix names: : :)

Extract the su�x (the last `.' and following characters) of each �le name.

See Section 8.3 [Functions for File Names], page 81.

$(basename names: : :)

Extract the base name (name without su�x) of each �le name.

See Section 8.3 [Functions for File Names], page 81.

$(addsuffix su�x,names: : :)

Append su�x to each word in names.

See Section 8.3 [Functions for File Names], page 81.

$(addprefix pre�x,names: : :)

Prepend pre�x to each word in names.

See Section 8.3 [Functions for File Names], page 81.

$(join list1,list2)

Join two parallel lists of words.

See Section 8.3 [Functions for File Names], page 81.

$(word n,text)

Extract the nth word (one-origin) of text.

See Section 8.3 [Functions for File Names], page 81.

$(words text)

Count the number of words in text.

See Section 8.3 [Functions for File Names], page 81.

$(firstword names: : :)

Extract the �rst word of names.

See Section 8.3 [Functions for File Names], page 81.

$(wildcard pattern: : :)

Find �le names matching a shell �le name pattern (not a `%' pattern).

See Section 4.2.3 [The Function wildcard], page 22.

$(shell command)

Execute a shell command and return its output.

See Section 8.6 [The shell Function], page 86.

146 GNU make

$(origin variable)

Return a string describing how the make variable variable was de�ned.

See Section 8.5 [The origin Function], page 85.

$(foreach var,words,text)

Evaluate text with var bound to each word in words, and concatenate the results.

See Section 8.4 [The foreach Function], page 83.

Here is a summary of the automatic variables. See Section 10.5.3 [Automatic Variables],

page 112, for full information.

$@ The �le name of the target.

$% The target member name, when the target is an archive member.

$< The name of the �rst dependency.

$? The names of all the dependencies that are newer than the target, with spaces between

them. For dependencies which are archive members, only the member named is used

(see Chapter 11 [Archives], page 121).

$^

$+ The names of all the dependencies, with spaces between them. For dependencies which

are archive members, only the member named is used (see Chapter 11 [Archives],

page 121). The value of $^ omits duplicate dependencies, while $+ retains them and

preserves their order.

$* The stem with which an implicit rule matches (see Section 10.5.4 [How Patterns Match],

page 114).

$(@D)

$(@F) The directory part and the �le-within-directory part of $@.

$(*D)

$(*F) The directory part and the �le-within-directory part of $*.

$(%D)

$(%F) The directory part and the �le-within-directory part of $%.

$(<D)

$(<F) The directory part and the �le-within-directory part of $<.

$(^D)

$(^F) The directory part and the �le-within-directory part of $^.

$(+D)

$(+F) The directory part and the �le-within-directory part of $+.

Appendix A: Quick Reference 147

$(?D)

$(?F) The directory part and the �le-within-directory part of $?.

These variables are used specially by GNU make:

MAKEFILES

Make�les to be read on every invocation of make.

See Section 3.4 [The Variable MAKEFILES], page 16.

VPATH

Directory search path for �les not found in the current directory.

See Section 4.3.1 [VPATH Search Path for All Dependencies], page 23.

SHELL

The name of the system default command interpreter, usually `/bin/sh'. You can

set SHELL in the make�le to change the shell used to run commands. See Section 5.2

[Command Execution], page 42.

MAKE

The name with which make was invoked. Using this variable in commands has special

meaning. See Section 5.6.1 [How the MAKE Variable Works], page 46.

MAKELEVEL

The number of levels of recursion (sub-makes).

See Section 5.6.2 [Variables/Recursion], page 47.

MAKEFLAGS

The ags given to make. You can set this in the environment or a make�le to set ags.

See Section 5.6.3 [Communicating Options to a Sub-make], page 50.

SUFFIXES

The default list of su�xes before make reads any make�les.

148 GNU make

Appendix B: Complex Make�le Example 149

Appendix B ComplexMake�le Example

Here is the make�le for the GNU tar program. This is a moderately complex make�le.

Because it is the �rst target, the default goal is `all'. An interesting feature of this make�le

is that `testpad.h' is a source �le automatically created by the testpad program, itself compiled

from `testpad.c'.

If you type `make' or `make all', then make creates the `tar' executable, the `rmt' daemon that

provides remote tape access, and the `tar.info' Info �le.

If you type `make install', then make not only creates `tar', `rmt', and `tar.info', but also

installs them.

If you type `make clean', then make removes the `.o' �les, and the `tar', `rmt', `testpad',

`testpad.h', and `core' �les.

If you type `make distclean', then make not only removes the same �les as does `make clean'

but also the `TAGS', `Makefile', and `config.status' �les. (Although it is not evident, this make�le

(and `config.status') is generated by the user with the configure program, which is provided in

the tar distribution, but is not shown here.)

If you type `make realclean', then make removes the same �les as does `make distclean' and

also removes the Info �les generated from `tar.texinfo'.

In addition, there are targets shar and dist that create distribution kits.

Generated automatically from Makefile.in by configure.

Un*x Makefile for GNU tar program.

Copyright (C) 1991 Free Software Foundation, Inc.

This program is free software; you can redistribute

it and/or modify it under the terms of the GNU

General Public License : : :

: : :

: : :

SHELL = /bin/sh

Start of system configuration section.

srcdir = .

150 GNU make

If you use gcc, you should either run the

fixincludes script that comes with it or else use

gcc with the -traditional option. Otherwise ioctl

calls will be compiled incorrectly on some systems.

CC = gcc -O

YACC = bison -y

INSTALL = /usr/local/bin/install -c

INSTALLDATA = /usr/local/bin/install -c -m 644

Things you might add to DEFS:

-DSTDC_HEADERS If you have ANSI C headers and

libraries.

-DPOSIX If you have POSIX.1 headers and

libraries.

-DBSD42 If you have sys/dir.h (unless

you use -DPOSIX), sys/file.h,

and st_blocks in `struct stat'.

-DUSG If you have System V/ANSI C

string and memory functions

and headers, sys/sysmacros.h,

fcntl.h, getcwd, no valloc,

and ndir.h (unless

you use -DDIRENT).

-DNO_MEMORY_H If USG or STDC_HEADERS but do not

include memory.h.

-DDIRENT If USG and you have dirent.h

instead of ndir.h.

-DSIGTYPE=int If your signal handlers

return int, not void.

-DNO_MTIO If you lack sys/mtio.h

(magtape ioctls).

-DNO_REMOTE If you do not have a remote shell

or rexec.

-DUSE_REXEC To use rexec for remote tape

operations instead of

forking rsh or remsh.

-DVPRINTF_MISSING If you lack vprintf function

(but have _doprnt).

-DDOPRNT_MISSING If you lack _doprnt function.

Also need to define

-DVPRINTF_MISSING.

-DFTIME_MISSING If you lack ftime system call.

-DSTRSTR_MISSING If you lack strstr function.

-DVALLOC_MISSING If you lack valloc function.

-DMKDIR_MISSING If you lack mkdir and

rmdir system calls.

-DRENAME_MISSING If you lack rename system call.

-DFTRUNCATE_MISSING If you lack ftruncate

Appendix B: Complex Make�le Example 151

system call.

-DV7 On Version 7 Unix (not

tested in a long time).

-DEMUL_OPEN3 If you lack a 3-argument version

of open, and want to emulate it

with system calls you do have.

-DNO_OPEN3 If you lack the 3-argument open

and want to disable the tar -k

option instead of emulating open.

-DXENIX If you have sys/inode.h

and need it 94 to be included.

DEFS = -DSIGTYPE=int -DDIRENT -DSTRSTR_MISSING \

-DVPRINTF_MISSING -DBSD42

Set this to rtapelib.o unless you defined NO_REMOTE,

in which case make it empty.

RTAPELIB = rtapelib.o

LIBS =

DEF_AR_FILE = /dev/rmt8

DEFBLOCKING = 20

CDEBUG = -g

CFLAGS = $(CDEBUG) -I. -I$(srcdir) $(DEFS) \

-DDEF_AR_FILE=\"$(DEF_AR_FILE)\" \

-DDEFBLOCKING=$(DEFBLOCKING)

LDFLAGS = -g

prefix = /usr/local

Prefix for each installed program,

normally empty or `g'.

binprefix =

The directory to install tar in.

bindir = $(prefix)/bin

The directory to install the info files in.

infodir = $(prefix)/info

End of system configuration section.

SRC1 = tar.c create.c extract.c buffer.c \

getoldopt.c update.c gnu.c mangle.c

SRC2 = version.c list.c names.c diffarch.c \

port.c wildmat.c getopt.c

SRC3 = getopt1.c regex.c getdate.y

SRCS = $(SRC1) $(SRC2) $(SRC3)

OBJ1 = tar.o create.o extract.o buffer.o \

getoldopt.o update.o gnu.o mangle.o

OBJ2 = version.o list.o names.o diffarch.o \

port.o wildmat.o getopt.o

152 GNU make

OBJ3 = getopt1.o regex.o getdate.o $(RTAPELIB)

OBJS = $(OBJ1) $(OBJ2) $(OBJ3)

AUX = README COPYING ChangeLog Makefile.in \

makefile.pc configure configure.in \

tar.texinfo tar.info* texinfo.tex \

tar.h port.h open3.h getopt.h regex.h \

rmt.h rmt.c rtapelib.c alloca.c \

msd_dir.h msd_dir.c tcexparg.c \

level-0 level-1 backup-specs testpad.c

all: tar rmt tar.info

tar: $(OBJS)

$(CC) $(LDFLAGS) -o $@ $(OBJS) $(LIBS)

rmt: rmt.c

$(CC) $(CFLAGS) $(LDFLAGS) -o $@ rmt.c

tar.info: tar.texinfo

makeinfo tar.texinfo

install: all

$(INSTALL) tar $(bindir)/$(binprefix)tar

-test ! -f rmt || $(INSTALL) rmt /etc/rmt

$(INSTALLDATA) $(srcdir)/tar.info* $(infodir)

$(OBJS): tar.h port.h testpad.h

regex.o buffer.o tar.o: regex.h

getdate.y has 8 shift/reduce conflicts.

testpad.h: testpad

./testpad

testpad: testpad.o

$(CC) -o $@ testpad.o

TAGS: $(SRCS)

etags $(SRCS)

clean:

rm -f *.o tar rmt testpad testpad.h core

distclean: clean

rm -f TAGS Makefile config.status

realclean: distclean

rm -f tar.info*

shar: $(SRCS) $(AUX)

shar $(SRCS) $(AUX) | compress \

> tar-`sed -e '/version_string/!d' \

-e 's/[^0-9.]*\([0-9.]*\).*/\1/' \

-e q

version.c`.shar.Z

Appendix B: Complex Make�le Example 153

dist: $(SRCS) $(AUX)

echo tar-`sed \

-e '/version_string/!d' \

-e 's/[^0-9.]*\([0-9.]*\).*/\1/' \

-e q

version.c` > .fname

-rm -rf `cat .fname`

mkdir `cat .fname`

ln $(SRCS) $(AUX) `cat .fname`

-rm -rf `cat .fname` .fname

tar chZf `cat .fname`.tar.Z `cat .fname`

tar.zoo: $(SRCS) $(AUX)

-rm -rf tmp.dir

-mkdir tmp.dir

-rm tar.zoo

for X in $(SRCS) $(AUX) ; do \

echo $$X ; \

sed 's/$$/^M/' $$X \

> tmp.dir/$$X ; done

cd tmp.dir ; zoo aM ../tar.zoo *

-rm -rf tmp.dir

154 GNU make

Index of Concepts 155

Index of Concepts

#
(comments), in commands . 41

(comments), in make�le . 13

#include . 37

$
$, in function call . 77

$, in rules . 20

$, in variable name . 60

$, in variable reference . 55

%
%, in pattern rules . 110

%, quoting in patsubst . 78

%, quoting in static pattern . 34

%, quoting in vpath . 25

%, quoting with \ (backslash) 25, 34, 78

*
* (wildcard character) . 20

,
,v (RCS �le extension) . 105

-
- (in commands) . 44

-, and define . 53

--assume-new . 92, 98

--assume-new, and recursion . 50

--assume-old . 93, 97

--assume-old, and recursion . 50

--debug . 96

--directory . 46, 95

--directory, and --print-directory 52

--directory, and recursion . 50

--dry-run . 41, 91, 97

--environment-overrides . 96

--file . 14, 89, 96

--file, and recursion . 50

--help . 96

--ignore-errors . 44, 96

--include-dir . 15, 96

--include-dir, and recursion . 50

--jobs . 42, 96

--jobs, and recursion . 50

--just-print . 41, 91, 97

--keep-going . 45, 95, 96

--load-average . 43, 97

--makefile. 14, 89, 96

--max-load . 43, 97

--new-file . 92, 98

--new-file, and recursion . 50

--no-builtin-rules . 97

--no-keep-going . 98

--no-print-directory . 52, 98

--old-file . 93, 97

--old-file, and recursion . 50

--print-data-base . 97

--print-directory . 98

--print-directory, and --directory 52

--print-directory, and recursion 52

--print-directory, disabling . 52

--question . 92, 97

--quiet . 41, 98

--recon . 41, 91, 97

--silent . 41, 98

--stop . 98

--touch . 92, 98

--touch, and recursion . 47

--version . 98

--warn-undefined-variables . 99

--what-if . 92, 98

-b . 95

-C . 46, 95

-C, and -w . 52

-C, and recursion . 50

-d . 96

-e . 96

156 GNU make

-e (shell ag) . 38

-f . 14, 89, 96

-f, and recursion . 50

-h . 96

-i . 44, 96

-I . 15, 96

-I, and recursion . 50

-j . 42, 96

-j, and archive update . 123

-j, and recursion . 50

-k . 45, 95, 96

-l . 97

-l (library search) . 27

-l (load average) . 43

-m . 95

-M (to compiler) . 37

-MM (to GNU compiler) . 38

-n . 41, 91, 97

-o . 93, 97

-o, and recursion . 50

-p . 97

-q . 92, 97

-r . 97

-s . 41, 97

-S . 98

-t . 92, 98

-t, and recursion . 47

-v . 98

-w . 98

-W . 92, 98

-w, and -C . 52

-w, and recursion . 52

-W, and recursion . 50

-w, disabling . 52

.

.a (archives). 123

.c . 103

.C . 103

.cc . 103

.ch . 105

.d . 39

.def . 104

.dvi . 105

.f . 103

.F . 103

.info . 105

.l . 105

.ln . 105

.mod . 104

.o . 103, 104

.p . 103

.PRECIOUS intermediate �les . 109

.r . 103

.s . 104

.S . 104

.sh . 105

.sym . 104

.tex . 105

.texi . 105

.texinfo . 105

.txinfo . 105

.w . 105

.web . 105

.y . 105

:
:: rules (double-colon) . 36

:= . 57, 63

=
= . 56, 63

?
? (wildcard character) . 20

[
[: : :] (wildcard characters) . 20

.SYMDEF . 122

@

@ (in commands) . 41

@, and define . 53

Index of Concepts 157

~

~ (tilde) . 20

+

+, and define . 53

+= . 64

\

\ (backslash), for continuation lines 7

\ (backslash), in commands . 42

\ (backslash), to quote % . 25, 34, 78

A
all (standard target) . 90

appending to variables . 64

ar . 107

archive . 121

archive member targets . 121

archive symbol directory updating 122

archive, and -j . 123

archive, and parallel execution . 123

archive, su�x rule for . 123

Arg list too long . 51

arguments of functions . 77

as . 104, 107

assembly, rule to compile . 104

automatic generation of dependencies 15, 37

automatic variables . 112

B
backquotes . 86

backslash (\), for continuation lines 7

backslash (\), in commands . 42

backslash (\), to quote % . 25, 34, 78

basename . 82

broken pipe . 43

bugs, reporting . 2

built-in special targets . 30

C
C, rule to compile . 103

C++, rule to compile . 103

cc . 103, 107

cd (shell command) . 42, 47

chains of rules . 108

check (standard target) . 91

clean (standard target) . 91

clean target . 8, 12

cleaning up . 12

clobber (standard target) . 91

co . 105, 107

combining rules by dependency . 11

command line variable de�nitions, and recursion. . . . 50

command line variables . 94

commands . 19

commands, backslash (\) in . 42

commands, comments in . 41

commands, echoing . 41

commands, empty . 54

commands, errors in . 44

commands, execution . 42

commands, execution in parallel . 42

commands, expansion . 86

commands, how to write . 41

commands, instead of executing . 91

commands, introduction to . 5

commands, quoting newlines in . 42

commands, sequences of . 52

comments, in commands . 41

comments, in make�le . 13

compatibility . 125

compatibility in exporting. 49

compilation, testing . 95

computed variable name . 60

conditionals . 71

continuation lines . 7

conventions for make�les . 131

ctangle . 105, 107

cweave . 105, 107

D
deducing commands (implicit rules) 10

default goal . 8, 19

default make�le name . 13

default rules, last-resort . 116

de�ning variables verbatim . 67

158 GNU make

deletion of target �les . 45

dependencies . 20

dependencies, automatic generation 15, 37

dependencies, introduction to . 5

dependencies, list of all . 112

dependencies, list of changed . 112

dependencies, varying (static pattern) 34

dependency . 19

dependency pattern, implicit . 110

dependency pattern, static (not implicit) 34

directive . 13

directories, printing them . 52

directories, updating archive symbol 122

directory part . 81

directory search (VPATH) . 23

directory search (VPATH), and implicit rules 26

directory search (VPATH), and link libraries 27

directory search (VPATH), and shell commands 26

dist (standard target) . 91

distclean (standard target) . 91

dollar sign ($), in function call . 77

dollar sign ($), in rules . 20

dollar sign ($), in variable name . 60

dollar sign ($), in variable reference 55

double-colon rules . 36

duplicate words, removing . 80

E
E2BIG . 51

echoing of commands . 41

editor . 5

Emacs (M-x compile) . 45

empty commands . 54

empty targets . 30

environment . 68

environment, and recursion . 47

environment, SHELL in . 42

errors (in commands) . 44

errors with wildcards . 21

execution, in parallel . 42

execution, instead of . 91

execution, of commands . 42

exit status (errors) . 44

explicit rule, de�nition of . 13

exporting variables . 47

F
f77 . 103, 107

features of GNU make . 125

features, missing . 129

�le name functions . 81

�le name of make�le . 13

�le name of make�le, how to specify 14

�le name pre�x, adding . 82

�le name su�x . 82

�le name su�x, adding . 82

�le name with wildcards . 20

�le name, basename of . 82

�le name, directory part . 81

�le name, nondirectory part . 81

�les, assuming new . 92

�les, assuming old . 93

�les, avoiding recompilation of . 93

�les, intermediate . 108

�ltering out words . 80

�ltering words . 80

�nding strings . 79

ags . 95

ags for compilers . 106

avors of variables . 56

FORCE. 29

force targets . 29

Fortran, rule to compile . 103

functions . 77

functions, for �le names . 81

functions, for text . 78

functions, syntax of . 77

G
g++ . 103, 107

gcc . 103

generating dependencies automatically 15, 37

get . 105, 107

globbing (wildcards) . 20

goal . 8

goal, default . 8, 19

Index of Concepts 159

goal, how to specify . 89

H
home directory . 20

I
IEEE Standard 1003.2 . 1

implicit rule . 101

implicit rule, and directory search 26

implicit rule, and VPATH . 26

implicit rule, de�nition of . 13

implicit rule, how to use . 101

implicit rule, introduction to . 10

implicit rule, prede�ned . 103

implicit rule, search algorithm . 119

including (MAKEFILES variable) . 16

including other make�les . 14

incompatibilities . 129

Info, rule to format . 105

install (standard target) . 91

intermediate �les . 108

intermediate �les, preserving . 109

interrupt . 45

J
job slots . 42

job slots, and recursion . 50

jobs, limiting based on load . 43

joining lists of words . 82

K
killing (interruption) . 45

L
last-resort default rules . 116

ld . 104

lex . 105, 107

Lex, rule to run . 105

libraries for linking, directory search 27

library archive, su�x rule for . 123

limiting jobs based on load . 43

link libraries, and directory search. 27

linking, prede�ned rule for . 104

lint . 105

lint, rule to run. 105

list of all dependencies . 112

list of changed dependencies . 112

load average . 43

loops in variable expansion . 57

lpr (shell command) . 21, 30

M
m2c . 104

macro . 55

make depend . 38

make�le . 5

make�le name . 13

make�le name, how to specify . 14

make�le rule parts . 5

make�le, and MAKEFILES variable 16

make�le, conventions for . 131

make�le, how make processes . 8

make�le, how to write . 13

make�le, including . 14

make�le, overriding . 18

make�le, remaking of . 16

make�le, simple . 6

makeinfo . 105, 107

match-anything rule . 114

match-anything rule, used to override 18

missing features . 129

mistakes with wildcards . 21

modi�ed variable reference . 59

Modula-2, rule to compile . 104

mostlyclean (standard target) . 91

multiple rules for one target . 33

multiple rules for one target (::) 36

multiple targets . 32

multiple targets, in pattern rule 110

N
name of make�le . 13

name of make�le, how to specify 14

nested variable reference . 60

newline, quoting, in commands . 42

newline, quoting, in make�le . 7

160 GNU make

nondirectory part . 81

O
obj . 9

OBJ . 9

objects . 9

OBJECTS . 9

objs . 9

OBJS . 9

old-fashioned su�x rules . 117

options . 95

options, and recursion . 50

options, setting from environment 51

options, setting in make�les . 51

order of pattern rules . 111

origin of variable . 85

overriding make�les . 18

overriding variables with arguments 94

overriding with override . 66

P
parallel execution . 42

parallel execution, and archive update 123

parts of make�le rule . 5

Pascal, rule to compile . 103

pattern rule . 109

pattern rules, order of . 111

pattern rules, static (not implicit) 34

pattern rules, static, syntax of . 34

pc . 103, 107

phony targets . 27

pitfalls of wildcards . 21

portability . 125

POSIX . 1

POSIX.2 . 51

precious targets . 31

pre�x, adding . 82

preserving intermediate �les . 109

preserving with .PRECIOUS . 31, 109

print (standard target) . 91

print target . 21, 30

printing directories . 52

printing of commands . 41

problems and bugs, reporting . 2

problems with wildcards . 21

processing a make�le . 8

Q
question mode . 92

quoting %, in patsubst . 78

quoting %, in static pattern . 34

quoting %, in vpath . 25

quoting newline, in commands . 42

quoting newline, in make�le . 7

R
Ratfor, rule to compile . 103

RCS, rule to extract from . 105

README . 14

realclean (standard target) . 91

recompilation . 5

recompilation, avoiding . 93

recording events with empty targets 30

recursion . 46

recursion, and -C . 50

recursion, and -f . 50

recursion, and -I . 50

recursion, and -j . 50

recursion, and -o . 50

recursion, and -t . 47

recursion, and -w . 52

recursion, and -W . 50

recursion, and command line variable de�nitions. . . . 50

recursion, and environment . 47

recursion, and MAKE variable . 46

recursion, and MAKEFILES variable 16

recursion, and options . 50

recursion, and printing directories 52

recursion, and variables . 47

recursion, level of . 49

recursive variable expansion . 55, 56

recursively expanded variables . 56

reference to variables . 55, 59

relinking . 9

remaking make�les . 16

removal of target �les . 45

Index of Concepts 161

removing duplicate words . 80

removing, to clean up . 12

reporting bugs . 2

rm . 107

rm (shell command) . 8, 21, 28, 44

rule commands . 41

rule dependencies . 20

rule syntax . 19

rule targets . 19

rule, and $. 20

rule, double-colon (::) . 36

rule, explicit, de�nition of . 13

rule, how to write . 19

rule, implicit. 101

rule, implicit, and directory search 26

rule, implicit, and VPATH . 26

rule, implicit, chains of . 108

rule, implicit, de�nition of . 13

rule, implicit, how to use . 101

rule, implicit, introduction to . 10

rule, implicit, prede�ned . 103

rule, introduction to . 5

rule, multiple for one target . 33

rule, no commands or dependencies 29

rule, pattern . 109

rule, static pattern . 34

rule, static pattern versus implicit 36

rule, with multiple targets . 32

S
s. (SCCS �le pre�x) . 105

SCCS, rule to extract from . 105

search algorithm, implicit rule . 119

search path for dependencies (VPATH) 23

search path for dependencies (VPATH), and implicit

rules . 26

search path for dependencies (VPATH), and link libraries

. 27

searching for strings . 79

sed (shell command) . 38

selecting words . 83

sequences of commands . 52

setting options from environment 51

setting options in make�les . 51

setting variables . 63

several rules for one target . 33

several targets in a rule . 32

shar (standard target) . 91

shell command . 8

shell command, and directory search 26

shell command, execution . 42

shell command, function for . 86

shell �le name pattern (in include) 14

shell wildcards (in include) . 14

signal . 45

silent operation . 41

simple make�le . 6

simple variable expansion . 55

simplifying with variables . 9

simply expanded variables . 57

sorting words . 80

spaces, in variable values . 58

spaces, stripping . 79

special targets . 30

specifying make�le name . 14

standard input . 43

standards conformance . 1

standards for make�les. 131

static pattern rule . 34

static pattern rule, syntax of . 34

static pattern rule, versus implicit 36

stem . 34, 114

stem, variable for . 112

strings, searching for . 79

stripping whitespace . 79

sub-make. 47

subdirectories, recursion for . 46

substitution variable reference . 59

su�x rule . 117

su�x rule, for archive . 123

su�x, adding . 82

su�x, function to �nd . 82

su�x, substituting in variables . 59

switches . 95

symbol directories, updating archive 122

syntax of rules . 19

162 GNU make

T
tab character (in commands) . 19

tabs in rules . 5

TAGS (standard target) . 91

tangle . 105, 107

tar (standard target) . 91

target . 19

target pattern, implicit . 110

target pattern, static (not implicit) 34

target, deleting on error . 45

target, deleting on interrupt . 45

target, multiple in pattern rule . 110

target, multiple rules for one . 33

target, touching . 92

targets . 19

targets without a �le . 27

targets, built-in special . 30

targets, empty . 30

targets, force . 29

targets, introduction to . 5

targets, multiple . 32

targets, phony . 27

terminal rule . 114

test (standard target) . 91

testing compilation . 95

tex . 105, 107

TEX, rule to run . 105

texi2dvi . 105, 107

Texinfo, rule to format . 105

tilde (~) . 20

touch (shell command) . 21, 30

touching �les . 92

U
unde�ned variables, warning message 99

updating archive symbol directories 122

updating make�les . 16

V
value . 55

value, how a variable gets it . 63

variable . 55

variable de�nition . 13

variables . 9

variables, `$' in name . 60

variables, and implicit rule . 112

variables, appending to . 64

variables, automatic . 112

variables, command line . 94

variables, command line, and recursion 50

variables, computed names . 60

variables, de�ning verbatim . 67

variables, environment . 47, 68

variables, exporting . 47

variables, avors . 56

variables, how they get their values 63

variables, how to reference . 55

variables, loops in expansion . 57

variables, modi�ed reference . 59

variables, nested references . 60

variables, origin of . 85

variables, overriding . 66

variables, overriding with arguments 94

variables, recursively expanded . 56

variables, setting . 63

variables, simply expanded . 57

variables, spaces in values . 58

variables, substituting su�x in . 59

variables, substitution reference . 59

variables, warning for unde�ned . 99

varying dependencies . 34

verbatim variable de�nition . 67

vpath . 23

VPATH, and implicit rules . 26

VPATH, and link libraries . 27

W
weave . 105, 107

Web, rule to run . 105

what if . 92

whitespace, in variable values . 58

whitespace, stripping . 79

wildcard . 20

wildcard pitfalls . 21

wildcard, function . 83

wildcard, in archive member . 121

Index of Concepts 163

wildcard, in include . 14

words, extracting �rst . 83

words, �ltering . 80

words, �ltering out . 80

words, �nding number . 83

words, iterating over . 83

words, joining lists . 82

words, removing duplicates . 80

words, selecting . 83

writing rule commands . 41

writing rules . 19

Y
yacc . 53, 105, 107

Yacc, rule to run . 105

164 GNU make

Index of Functions, Variables, & Directives 165

Index of Functions, Variables, &Directives

$
$% . 112

$(%D) . 113

$(%F) . 113

$(*D) . 113

$(*F) . 113

$(?D) . 114

$(?F) . 114

$(@D) . 113

$(@F) . 113

$(^D) . 114

$(^F) . 114

$(<D) . 113

$(<F) . 113

$* . 112

$*, and static pattern . 35

$? . 112

$@ . 112

$+ . 112

$^ . 112

$< . 112

%
% (automatic variable) . 112

%D (automatic variable) . 113

%F (automatic variable) . 113

*
* (automatic variable) . 112

* (automatic variable), unsupported bizarre usage

. 129

*D (automatic variable) . 113

*F (automatic variable) . 113

.

.DEFAULT . 31, 117

.DEFAULT, and empty commands 54

.DELETE ON ERROR. 45

.EXPORT ALL VARIABLES . 31, 49

.IGNORE . 31, 44

.PHONY . 28, 30

.POSIX . 51

.PRECIOUS . 31, 46

.SILENT . 31, 41

.SUFFIXES . 30, 118

/
/usr/gnu/include . 15

/usr/include . 15

/usr/local/include . 15

?
? (automatic variable) . 112

?D (automatic variable) . 114

?F (automatic variable) . 114

@

@ (automatic variable) . 112

@D (automatic variable) . 113

@F (automatic variable) . 113

+

+ (automatic variable) . 112

^

^ (automatic variable) . 112

^D (automatic variable) . 114

^F (automatic variable) . 114

<

< (automatic variable) . 112

<D (automatic variable) . 113

<F (automatic variable) . 113

A
addprefix . 82

addsuffix . 82

AR . 107

166 GNU make

ARFLAGS . 108

AS . 107

ASFLAGS . 108

B
basename . 82

C
CC . 107

CFLAGS . 108

CO . 107

COFLAGS . 108

CPP . 107

CPPFLAGS . 108

CTANGLE . 107

CWEAVE . 107

CXX . 107

CXXFLAGS . 108

D
define . 67

dir . 81

E
else . 72

endef. 67

endif. 72

export . 48

F
FC . 107

FFLAGS . 108

filter . 80

filter-out . 80

findstring . 79

firstword . 83

foreach . 83

G
GET . 107

GFLAGS . 108

GNUmakefile . 14

I
ifdef. 72

ifeq . 72

ifndef . 72

ifneq. 72

include . 14

J
join . 82

L
LDFLAGS . 108

LEX . 107

LFLAGS . 108

M
MAKE . 46, 58

makefile . 14

Makefile . 14

MAKEFILES . 16, 50

MAKEFLAGS . 50

MAKEINFO . 107

MAKELEVEL . 49, 58

MAKEOVERRIDES . 51

MFLAGS . 51

N
notdir . 81

O
origin . 85

OUTPUT OPTION. 106

override . 66

P
patsubst . 59, 78

PC . 107

PFLAGS . 108

R
RFLAGS . 108

RM . 107

Index of Functions, Variables, & Directives 167

S
shell. 86

SHELL. 42

SHELL (command execution) . 42

sort . 80

strip. 79

subst . 32, 78

suffix . 82

SUFFIXES . 119

T
TANGLE . 107

TEX . 107

TEXI2DVI . 107

U
unexport . 48

V
vpath . 23, 24

VPATH. 23

W
WEAVE . 107

wildcard . 22, 83

word . 83

words. 83

Y
YACC . 107

YACCR . 107

YFLAGS . 108

168 GNU make

i

Short Contents

1 Overview of make . 1

2 An Introduction to Make�les . 5

3 Writing Make�les . 13

4 Writing Rules . 19

5 Writing the Commands in Rules . 41

6 How to Use Variables . 55

7 Conditional Parts of Make�les . 71

8 Functions for Transforming Text . 77

9 How to Run make . 89

10 Using Implicit Rules . 101

11 Using make to Update Archive Files . 121

12 Features of GNU make . 125

13 Incompatibilities and Missing Features . 129

14 Make�le Conventions . 131

Appendix A Quick Reference . 143

Appendix B Complex Make�le Example . 149

Index of Concepts . 155

Index of Functions, Variables, & Directives . 165

ii GNU make

iii

Table of Contents

1 Overview of make . 1

1.1 How to Read This Manual . 1

1.2 Problems and Bugs . 2

2 An Introduction to Make�les . 5

2.1 What a Rule Looks Like . 5

2.2 A Simple Make�le . 6

2.3 How make Processes a Make�le . 8

2.4 Variables Make Make�les Simpler . 9

2.5 Letting make Deduce the Commands . 10

2.6 Another Style of Make�le . 11

2.7 Rules for Cleaning the Directory . 12

3 Writing Make�les . 13

3.1 What Make�les Contain . 13

3.2 What Name to Give Your Make�le . 13

3.3 Including Other Make�les . 14

3.4 The Variable MAKEFILES . 16

3.5 How Make�les Are Remade . 16

3.6 Overriding Part of Another Make�le . 18

4 Writing Rules . 19

4.1 Rule Syntax . 19

4.2 Using Wildcard Characters in File Names . 20

4.2.1 Wildcard Examples . 21

4.2.2 Pitfalls of Using Wildcards . 21

4.2.3 The Function wildcard . 22

4.3 Searching Directories for Dependencies . 23

4.3.1 VPATH: Search Path for All Dependencies 23

4.3.2 The vpath Directive . 24

4.3.3 Writing Shell Commands with Directory Search 26

4.3.4 Directory Search and Implicit Rules . 26

4.3.5 Directory Search for Link Libraries . 27

4.4 Phony Targets . 27

4.5 Rules without Commands or Dependencies . 29

4.6 Empty Target Files to Record Events . 30

4.7 Special Built-in Target Names . 30

iv GNU make

4.8 Multiple Targets in a Rule . 32

4.9 Multiple Rules for One Target . 33

4.10 Static Pattern Rules . 34

4.10.1 Syntax of Static Pattern Rules . 34

4.10.2 Static Pattern Rules versus Implicit Rules 36

4.11 Double-Colon Rules . 36

4.12 Generating Dependencies Automatically . 37

5 Writing the Commands in Rules. 41

5.1 Command Echoing . 41

5.2 Command Execution . 42

5.3 Parallel Execution . 42

5.4 Errors in Commands . 44

5.5 Interrupting or Killing make . 45

5.6 Recursive Use of make . 46

5.6.1 How the MAKE Variable Works . 46

5.6.2 Communicating Variables to a Sub-make 47

5.6.3 Communicating Options to a Sub-make 50

5.6.4 The `--print-directory' Option . 52

5.7 De�ning Canned Command Sequences . 52

5.8 Using Empty Commands . 54

6 How to Use Variables . 55

6.1 Basics of Variable References . 55

6.2 The Two Flavors of Variables . 56

6.3 Advanced Features for Reference to Variables 59

6.3.1 Substitution References . 59

6.3.2 Computed Variable Names . 60

6.4 How Variables Get Their Values . 63

6.5 Setting Variables . 63

6.6 Appending More Text to Variables . 64

6.7 The override Directive . 66

6.8 De�ning Variables Verbatim . 67

6.9 Variables from the Environment . 68

7 Conditional Parts of Make�les . 71

7.1 Example of a Conditional . 71

7.2 Syntax of Conditionals . 72

7.3 Conditionals that Test Flags . 75

v

8 Functions for Transforming Text 77

8.1 Function Call Syntax . 77

8.2 Functions for String Substitution and Analysis 78

8.3 Functions for File Names . 81

8.4 The foreach Function . 83

8.5 The origin Function . 85

8.6 The shell Function . 86

9 How to Run make . 89

9.1 Arguments to Specify the Make�le . 89

9.2 Arguments to Specify the Goals . 89

9.3 Instead of Executing the Commands . 91

9.4 Avoiding Recompilation of Some Files . 93

9.5 Overriding Variables . 94

9.6 Testing the Compilation of a Program . 95

9.7 Summary of Options . 95

10 Using Implicit Rules . 101

10.1 Using Implicit Rules . 101

10.2 Catalogue of Implicit Rules . 103

10.3 Variables Used by Implicit Rules . 106

10.4 Chains of Implicit Rules . 108

10.5 De�ning and Rede�ning Pattern Rules . 109

10.5.1 Introduction to Pattern Rules . 109

10.5.2 Pattern Rule Examples . 111

10.5.3 Automatic Variables . 112

10.5.4 How Patterns Match . 114

10.5.5 Match-Anything Pattern Rules . 114

10.5.6 Canceling Implicit Rules . 116

10.6 De�ning Last-Resort Default Rules . 116

10.7 Old-Fashioned Su�x Rules . 117

10.8 Implicit Rule Search Algorithm . 119

11 Using make to Update Archive Files 121

11.1 Archive Members as Targets . 121

11.2 Implicit Rule for Archive Member Targets . 122

11.2.1 Updating Archive Symbol Directories 122

11.3 Dangers When Using Archives . 123

11.4 Su�x Rules for Archive Files . 123

12 Features of GNU make . 125

vi GNU make

13 Incompatibilities and Missing Features 129

14 Make�le Conventions . 131

14.1 General Conventions for Make�les . 131

14.2 Utilities in Make�les . 132

14.3 Standard Targets for Users. 133

14.4 Variables for Specifying Commands . 136

14.5 Variables for Installation Directories . 137

Appendix A Quick Reference . 143

Appendix B Complex Make�le Example 149

Index of Concepts . 155

Index of Functions, Variables, & Directives 165

