
Using as
The gnu Assembler

Version 2.10.91

The Free Software Foundation Inc. thanks The Nice Computer Company of Australia for
loaning Dean Elsner to write the first (Vax) version of as for Project gnu. The proprietors,
management and staff of TNCCA thank FSF for distracting the boss while they got some
work done.

Dean Elsner, Jay Fenlason & friends

Using as
Edited by Cygnus Support

Copyright c© 1991, 92, 93, 94, 95, 96, 97, 98, 99, 2000, 2001 Free Software Foundation, Inc.
Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.1 or any later version published by the
Free Software Foundation; with no Invariant Sections, with no Front-Cover Texts, and with
no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free
Documentation License".

Chapter 1: Overview 1

1 Overview

This manual is a user guide to the gnu assembler as.
Here is a brief summary of how to invoke as. For details, see Chapter 2 [Comand-Line

Options], page 11.
as [-a[cdhlns][=file]] [-D] [--defsym sym=val]
[-f] [--gstabs] [--gdwarf2] [--help] [-I dir] [-J] [-K] [-L]
[--keep-locals] [-o objfile] [-R] [--statistics] [-v]
[-version] [--version] [-W] [--warn] [--fatal-warnings]
[-w] [-x] [-Z] [--target-help]
[-marc[5|6|7|8]]
[-EB | -EL]
[-m[arm]1 | -m[arm]2 | -m[arm]250 | -m[arm]3 | -m[arm]6 | -m[arm]60 |

-m[arm]600 | -m[arm]610 | -m[arm]620 | -m[arm]7[t][[d]m[i]][fe] | -m[arm]70 |
-m[arm]700 | -m[arm]710[c] | -m[arm]7100 | -m[arm]7500 | -m[arm]8 |
-m[arm]810 | -m[arm]9 | -m[arm]920 | -m[arm]920t | -m[arm]9tdmi |
-mstrongarm | -mstrongarm110 | -mstrongarm1100]

[-m[arm]v2 | -m[arm]v2a | -m[arm]v3 | -m[arm]v3m | -m[arm]v4 | -m[arm]v4t |
-m[arm]v5 | -[arm]v5t | -[arm]v5te]

[-mthumb | -mall]
[-mfpa10 | -mfpa11 | -mfpe-old | -mno-fpu]
[-EB | -EL]
[-mapcs-32 | -mapcs-26 | -mapcs-float | -mapcs-reentrant]
[-mthumb-interwork]
[-moabi]
[-k]
[-O]
[-O | -n | -N]
[-mb | -me]
[-Av6 | -Av7 | -Av8 | -Asparclet | -Asparclite

-Av8plus | -Av8plusa | -Av9 | -Av9a]
[-xarch=v8plus | -xarch=v8plusa] [-bump] [-32 | -64]
[-ACA | -ACA_A | -ACB | -ACC | -AKA | -AKB | -AKC | -AMC]
[-b] [-no-relax]
[--m32rx | --[no-]warn-explicit-parallel-conflicts | --W[n]p]
[-l] [-m68000 | -m68010 | -m68020 | ...]
[-jsri2bsr] [-sifilter] [-relax]
[-mcpu=[210|340]]
[-m68hc11 | -m68hc12]
[--force-long-branchs] [--short-branchs] [--strict-direct-mode]
[--print-insn-syntax] [--print-opcodes] [--generate-example]
[-nocpp] [-EL] [-EB] [-G num] [-mcpu=CPU]
[-mips1] [-mips2] [-mips3] [-mips4] [-mips5]
[-mips32] [-mips64]
[-m4650] [-no-m4650]
[--trap] [--break]
[--emulation=name]
[-- | files ...]

2 Using as

-a[cdhlmns]
Turn on listings, in any of a variety of ways:

-ac omit false conditionals

-ad omit debugging directives

-ah include high-level source

-al include assembly

-am include macro expansions

-an omit forms processing

-as include symbols

=file set the name of the listing file

You may combine these options; for example, use ‘-aln’ for assembly listing
without forms processing. The ‘=file’ option, if used, must be the last one.
By itself, ‘-a’ defaults to ‘-ahls’.

-D Ignored. This option is accepted for script compatibility with calls to other
assemblers.

--defsym sym=value
Define the symbol sym to be value before assembling the input file. value must
be an integer constant. As in C, a leading ‘0x’ indicates a hexadecimal value,
and a leading ‘0’ indicates an octal value.

-f “fast”—skip whitespace and comment preprocessing (assume source is compiler
output).

--gstabs Generate stabs debugging information for each assembler line. This may help
debugging assembler code, if the debugger can handle it.

--gdwarf2
Generate DWARF2 debugging information for each assembler line. This may
help debugging assembler code, if the debugger can handle it. Note - this option
is only supported by some targets, not all of them.

--help Print a summary of the command line options and exit.

--target-help
Print a summary of all target specific options and exit.

-I dir Add directory dir to the search list for .include directives.

-J Don’t warn about signed overflow.

-K Issue warnings when difference tables altered for long displacements.

-L
--keep-locals

Keep (in the symbol table) local symbols. On traditional a.out systems these
start with ‘L’, but different systems have different local label prefixes.

-o objfile Name the object-file output from as objfile.

Chapter 1: Overview 3

-R Fold the data section into the text section.

--statistics
Print the maximum space (in bytes) and total time (in seconds) used by assem-
bly.

--strip-local-absolute
Remove local absolute symbols from the outgoing symbol table.

-v
-version Print the as version.

--version
Print the as version and exit.

-W
--no-warn

Suppress warning messages.

--fatal-warnings
Treat warnings as errors.

--warn Don’t suppress warning messages or treat them as errors.

-w Ignored.

-x Ignored.

-Z Generate an object file even after errors.

-- | files ...
Standard input, or source files to assemble.

The following options are available when as is configured for an ARC processor.

-marc[5|6|7|8]
This option selects the core processor variant.

-EB | -EL Select either big-endian (-EB) or little-endian (-EL) output.

The following options are available when as is configured for the ARM processor family.

-m[arm][1|2|3|6|7|8|9][...]
Specify which ARM processor variant is the target.

-m[arm]v[2|2a|3|3m|4|4t|5|5t]
Specify which ARM architecture variant is used by the target.

-mthumb | -mall
Enable or disable Thumb only instruction decoding.

-mfpa10 | -mfpa11 | -mfpe-old | -mno-fpu
Select which Floating Point architecture is the target.

-mapcs-32 | -mapcs-26 | -mapcs-float | -mapcs-reentrant | -moabi
Select which procedure calling convention is in use.

-EB | -EL Select either big-endian (-EB) or little-endian (-EL) output.

4 Using as

-mthumb-interwork
Specify that the code has been generated with interworking between Thumb
and ARM code in mind.

-k Specify that PIC code has been generated.

The following options are available when as is configured for a D10V processor.

-O Optimize output by parallelizing instructions.

The following options are available when as is configured for a D30V processor.

-O Optimize output by parallelizing instructions.

-n Warn when nops are generated.

-N Warn when a nop after a 32-bit multiply instruction is generated.

The following options are available when as is configured for the Intel 80960 processor.

-ACA | -ACA_A | -ACB | -ACC | -AKA | -AKB | -AKC | -AMC
Specify which variant of the 960 architecture is the target.

-b Add code to collect statistics about branches taken.

-no-relax
Do not alter compare-and-branch instructions for long displacements; error if
necessary.

The following options are available when as is configured for the Mitsubishi M32R series.

--m32rx Specify which processor in the M32R family is the target. The default is nor-
mally the M32R, but this option changes it to the M32RX.

--warn-explicit-parallel-conflicts or --Wp
Produce warning messages when questionable parallel constructs are encoun-
tered.

--no-warn-explicit-parallel-conflicts or --Wnp
Do not produce warning messages when questionable parallel constructs are
encountered.

The following options are available when as is configured for the Motorola 68000 series.

-l Shorten references to undefined symbols, to one word instead of two.

-m68000 | -m68008 | -m68010 | -m68020 | -m68030 | -m68040 | -m68060
| -m68302 | -m68331 | -m68332 | -m68333 | -m68340 | -mcpu32 | -m5200

Specify what processor in the 68000 family is the target. The default is normally
the 68020, but this can be changed at configuration time.

-m68881 | -m68882 | -mno-68881 | -mno-68882
The target machine does (or does not) have a floating-point coprocessor. The
default is to assume a coprocessor for 68020, 68030, and cpu32. Although the
basic 68000 is not compatible with the 68881, a combination of the two can
be specified, since it’s possible to do emulation of the coprocessor instructions
with the main processor.

Chapter 1: Overview 5

-m68851 | -mno-68851
The target machine does (or does not) have a memory-management unit co-
processor. The default is to assume an MMU for 68020 and up.

The following options are available when as is configured for a picoJava processor.

-mb Generate “big endian” format output.

-ml Generate “little endian” format output.

The following options are available when as is configured for the Motorola 68HC11 or
68HC12 series.

-m68hc11 | -m68hc12
Specify what processor is the target. The default is defined by the configuration
option when building the assembler.

--force-long-branchs
Relative branches are turned into absolute ones. This concerns conditional
branches, unconditional branches and branches to a sub routine.

-S | --short-branchs
Do not turn relative branchs into absolute ones when the offset is out of range.

--strict-direct-mode
Do not turn the direct addressing mode into extended addressing mode when
the instruction does not support direct addressing mode.

--print-insn-syntax
Print the syntax of instruction in case of error.

--print-opcodes
print the list of instructions with syntax and then exit.

--generate-example
print an example of instruction for each possible instruction and then exit. This
option is only useful for testing as.

The following options are available when as is configured for the SPARC architecture:

-Av6 | -Av7 | -Av8 | -Asparclet | -Asparclite
-Av8plus | -Av8plusa | -Av9 | -Av9a

Explicitly select a variant of the SPARC architecture.
‘-Av8plus’ and ‘-Av8plusa’ select a 32 bit environment. ‘-Av9’ and ‘-Av9a’
select a 64 bit environment.
‘-Av8plusa’ and ‘-Av9a’ enable the SPARC V9 instruction set with Ultra-
SPARC extensions.

-xarch=v8plus | -xarch=v8plusa
For compatibility with the Solaris v9 assembler. These options are equivalent
to -Av8plus and -Av8plusa, respectively.

-bump Warn when the assembler switches to another architecture.

The following options are available when as is configured for a MIPS processor.

6 Using as

-G num This option sets the largest size of an object that can be referenced implicitly
with the gp register. It is only accepted for targets that use ECOFF format,
such as a DECstation running Ultrix. The default value is 8.

-EB Generate “big endian” format output.

-EL Generate “little endian” format output.

-mips1
-mips2
-mips3
-mips4
-mips32 Generate code for a particular MIPS Instruction Set Architecture level.

‘-mips1’ corresponds to the r2000 and r3000 processors, ‘-mips2’ to the
r6000 processor, and ‘-mips3’ to the r4000 processor. ‘-mips5’, ‘-mips32’,
and ‘-mips64’ correspond to generic MIPS V, MIPS32, and MIPS64 ISA
processors, respectively.

-m4650
-no-m4650

Generate code for the MIPS r4650 chip. This tells the assembler to accept
the ‘mad’ and ‘madu’ instruction, and to not schedule ‘nop’ instructions around
accesses to the ‘HI’ and ‘LO’ registers. ‘-no-m4650’ turns off this option.

-mcpu=CPU
Generate code for a particular MIPS cpu. It is exactly equivalent to ‘-mcpu’,
except that there are more value of cpu understood.

--emulation=name
This option causes as to emulate as configured for some other target, in all
respects, including output format (choosing between ELF and ECOFF only),
handling of pseudo-opcodes which may generate debugging information or store
symbol table information, and default endianness. The available configuration
names are: ‘mipsecoff’, ‘mipself’, ‘mipslecoff’, ‘mipsbecoff’, ‘mipslelf’,
‘mipsbelf’. The first two do not alter the default endianness from that of the
primary target for which the assembler was configured; the others change the
default to little- or big-endian as indicated by the ‘b’ or ‘l’ in the name. Using
‘-EB’ or ‘-EL’ will override the endianness selection in any case.

This option is currently supported only when the primary target as is config-
ured for is a MIPS ELF or ECOFF target. Furthermore, the primary target
or others specified with ‘--enable-targets=...’ at configuration time must
include support for the other format, if both are to be available. For example,
the Irix 5 configuration includes support for both.

Eventually, this option will support more configurations, with more fine-grained
control over the assembler’s behavior, and will be supported for more processors.

-nocpp as ignores this option. It is accepted for compatibility with the native tools.

Chapter 1: Overview 7

--trap
--no-trap
--break
--no-break

Control how to deal with multiplication overflow and division by zero. ‘--trap’
or ‘--no-break’ (which are synonyms) take a trap exception (and only work
for Instruction Set Architecture level 2 and higher); ‘--break’ or ‘--no-trap’
(also synonyms, and the default) take a break exception.

The following options are available when as is configured for an MCore processor.

-jsri2bsr
-nojsri2bsr

Enable or disable the JSRI to BSR transformation. By default this is enabled.
The command line option ‘-nojsri2bsr’ can be used to disable it.

-sifilter
-nosifilter

Enable or disable the silicon filter behaviour. By default this is disabled. The
default can be overridden by the ‘-sifilter’ command line option.

-relax Alter jump instructions for long displacements.

-mcpu=[210|340]
Select the cpu type on the target hardware. This controls which instructions
can be assembled.

-EB Assemble for a big endian target.

-EL Assemble for a little endian target.

1.1 Structure of this Manual

This manual is intended to describe what you need to know to use gnu as. We cover the
syntax expected in source files, including notation for symbols, constants, and expressions;
the directives that as understands; and of course how to invoke as.

This manual also describes some of the machine-dependent features of various flavors of
the assembler.

On the other hand, this manual is not intended as an introduction to programming
in assembly language—let alone programming in general! In a similar vein, we make no
attempt to introduce the machine architecture; we do not describe the instruction set,
standard mnemonics, registers or addressing modes that are standard to a particular archi-
tecture. You may want to consult the manufacturer’s machine architecture manual for this
information.

8 Using as

1.2 The GNU Assembler

gnu as is really a family of assemblers. If you use (or have used) the gnu assembler on
one architecture, you should find a fairly similar environment when you use it on another
architecture. Each version has much in common with the others, including object file
formats, most assembler directives (often called pseudo-ops) and assembler syntax.

as is primarily intended to assemble the output of the gnu C compiler gcc for use by
the linker ld. Nevertheless, we’ve tried to make as assemble correctly everything that other
assemblers for the same machine would assemble. Any exceptions are documented explicitly
(see Chapter 8 [Machine Dependencies], page 61). This doesn’t mean as always uses the
same syntax as another assembler for the same architecture; for example, we know of several
incompatible versions of 680x0 assembly language syntax.

Unlike older assemblers, as is designed to assemble a source program in one pass of the
source file. This has a subtle impact on the .org directive (see Section 7.52 [.org], page 47).

1.3 Object File Formats

The gnu assembler can be configured to produce several alternative object file formats.
For the most part, this does not affect how you write assembly language programs; but di-
rectives for debugging symbols are typically different in different file formats. See Section 5.5
[Symbol Attributes], page 30.

1.4 Command Line

After the program name as, the command line may contain options and file names.
Options may appear in any order, and may be before, after, or between file names. The
order of file names is significant.

‘--’ (two hyphens) by itself names the standard input file explicitly, as one of the files
for as to assemble.

Except for ‘--’ any command line argument that begins with a hyphen (‘-’) is an option.
Each option changes the behavior of as. No option changes the way another option works.
An option is a ‘-’ followed by one or more letters; the case of the letter is important. All
options are optional.

Some options expect exactly one file name to follow them. The file name may either
immediately follow the option’s letter (compatible with older assemblers) or it may be the
next command argument (gnu standard). These two command lines are equivalent:

as -o my-object-file.o mumble.s
as -omy-object-file.o mumble.s

Chapter 1: Overview 9

1.5 Input Files

We use the phrase source program, abbreviated source, to describe the program input
to one run of as. The program may be in one or more files; how the source is partitioned
into files doesn’t change the meaning of the source.

The source program is a concatenation of the text in all the files, in the order specified.

Each time you run as it assembles exactly one source program. The source program is
made up of one or more files. (The standard input is also a file.)

You give as a command line that has zero or more input file names. The input files are
read (from left file name to right). A command line argument (in any position) that has no
special meaning is taken to be an input file name.

If you give as no file names it attempts to read one input file from the as standard input,
which is normally your terminal. You may have to type 〈ctl-D〉 to tell as there is no more
program to assemble.

Use ‘--’ if you need to explicitly name the standard input file in your command line.

If the source is empty, as produces a small, empty object file.

Filenames and Line-numbers

There are two ways of locating a line in the input file (or files) and either may be used
in reporting error messages. One way refers to a line number in a physical file; the other
refers to a line number in a “logical” file. See Section 1.7 [Error and Warning Messages],
page 10.

Physical files are those files named in the command line given to as.

Logical files are simply names declared explicitly by assembler directives; they bear no
relation to physical files. Logical file names help error messages reflect the original source
file, when as source is itself synthesized from other files. as understands the ‘#’ directives
emitted by the gcc preprocessor. See also Section 7.27 [.file], page 40.

1.6 Output (Object) File

Every time you run as it produces an output file, which is your assembly language
program translated into numbers. This file is the object file. Its default name is a.out, or
b.out when as is configured for the Intel 80960. You can give it another name by using
the -o option. Conventionally, object file names end with ‘.o’. The default name is used
for historical reasons: older assemblers were capable of assembling self-contained programs
directly into a runnable program. (For some formats, this isn’t currently possible, but it
can be done for the a.out format.)

The object file is meant for input to the linker ld. It contains assembled program code,
information to help ld integrate the assembled program into a runnable file, and (optionally)
symbolic information for the debugger.

10 Using as

1.7 Error and Warning Messages

as may write warnings and error messages to the standard error file (usually your ter-
minal). This should not happen when a compiler runs as automatically. Warnings report
an assumption made so that as could keep assembling a flawed program; errors report a
grave problem that stops the assembly.

Warning messages have the format
file_name:NNN:Warning Message Text

(where NNN is a line number). If a logical file name has been given (see Section 7.27
[.file], page 40) it is used for the filename, otherwise the name of the current input file
is used. If a logical line number was given (see Section 7.43 [.line], page 44) then it is
used to calculate the number printed, otherwise the actual line in the current source file is
printed. The message text is intended to be self explanatory (in the grand Unix tradition).

Error messages have the format
file_name:NNN:FATAL:Error Message Text

The file name and line number are derived as for warning messages. The actual message
text may be rather less explanatory because many of them aren’t supposed to happen.

Chapter 2: Command-Line Options 11

2 Command-Line Options

This chapter describes command-line options available in all versions of the gnu as-
sembler; see Chapter 8 [Machine Dependencies], page 61, for options specific to particular
machine architectures.

If you are invoking as via the gnu C compiler (version 2), you can use the ‘-Wa’ option
to pass arguments through to the assembler. The assembler arguments must be separated
from each other (and the ‘-Wa’) by commas. For example:

gcc -c -g -O -Wa,-alh,-L file.c

This passes two options to the assembler: ‘-alh’ (emit a listing to standard output with
with high-level and assembly source) and ‘-L’ (retain local symbols in the symbol table).

Usually you do not need to use this ‘-Wa’ mechanism, since many compiler command-
line options are automatically passed to the assembler by the compiler. (You can call the
gnu compiler driver with the ‘-v’ option to see precisely what options it passes to each
compilation pass, including the assembler.)

2.1 Enable Listings: -a[cdhlns]

These options enable listing output from the assembler. By itself, ‘-a’ requests high-
level, assembly, and symbols listing. You can use other letters to select specific options
for the list: ‘-ah’ requests a high-level language listing, ‘-al’ requests an output-program
assembly listing, and ‘-as’ requests a symbol table listing. High-level listings require that a
compiler debugging option like ‘-g’ be used, and that assembly listings (‘-al’) be requested
also.

Use the ‘-ac’ option to omit false conditionals from a listing. Any lines which are not
assembled because of a false .if (or .ifdef, or any other conditional), or a true .if followed
by an .else, will be omitted from the listing.

Use the ‘-ad’ option to omit debugging directives from the listing.

Once you have specified one of these options, you can further control listing output and
its appearance using the directives .list, .nolist, .psize, .eject, .title, and .sbttl.
The ‘-an’ option turns off all forms processing. If you do not request listing output with
one of the ‘-a’ options, the listing-control directives have no effect.

The letters after ‘-a’ may be combined into one option, e.g., ‘-aln’.

2.2 -D

This option has no effect whatsoever, but it is accepted to make it more likely that
scripts written for other assemblers also work with as.

12 Using as

2.3 Work Faster: -f

‘-f’ should only be used when assembling programs written by a (trusted) compiler. ‘-f’
stops the assembler from doing whitespace and comment preprocessing on the input file(s)
before assembling them. See Section 3.1 [Preprocessing], page 17.

Warning: if you use ‘-f’ when the files actually need to be preprocessed (if
they contain comments, for example), as does not work correctly.

2.4 .include search path: -I path

Use this option to add a path to the list of directories as searches for files specified in
.include directives (see Section 7.36 [.include], page 43). You may use -I as many times
as necessary to include a variety of paths. The current working directory is always searched
first; after that, as searches any ‘-I’ directories in the same order as they were specified
(left to right) on the command line.

2.5 Difference Tables: -K

as sometimes alters the code emitted for directives of the form ‘.word sym1-sym2’; see
Section 7.91 [.word], page 59. You can use the ‘-K’ option if you want a warning issued
when this is done.

2.6 Include Local Labels: -L

Labels beginning with ‘L’ (upper case only) are called local labels. See Section 5.3
[Symbol Names], page 29. Normally you do not see such labels when debugging, because
they are intended for the use of programs (like compilers) that compose assembler programs,
not for your notice. Normally both as and ld discard such labels, so you do not normally
debug with them.

This option tells as to retain those ‘L...’ symbols in the object file. Usually if you do
this you also tell the linker ld to preserve symbols whose names begin with ‘L’.

By default, a local label is any label beginning with ‘L’, but each target is allowed to
redefine the local label prefix. On the HPPA local labels begin with ‘L$’.

2.7 Assemble in MRI Compatibility Mode: -M

The -M or --mri option selects MRI compatibility mode. This changes the syntax and
pseudo-op handling of as to make it compatible with the ASM68K or the ASM960 (depending
upon the configured target) assembler from Microtec Research. The exact nature of the
MRI syntax will not be documented here; see the MRI manuals for more information. Note

Chapter 2: Command-Line Options 13

in particular that the handling of macros and macro arguments is somewhat different. The
purpose of this option is to permit assembling existing MRI assembler code using as.

The MRI compatibility is not complete. Certain operations of the MRI assembler de-
pend upon its object file format, and can not be supported using other object file formats.
Supporting these would require enhancing each object file format individually. These are:
• global symbols in common section

The m68k MRI assembler supports common sections which are merged by the linker.
Other object file formats do not support this. as handles common sections by treating
them as a single common symbol. It permits local symbols to be defined within a
common section, but it can not support global symbols, since it has no way to describe
them.

• complex relocations
The MRI assemblers support relocations against a negated section address, and reloca-
tions which combine the start addresses of two or more sections. These are not support
by other object file formats.

• END pseudo-op specifying start address
The MRI END pseudo-op permits the specification of a start address. This is not
supported by other object file formats. The start address may instead be specified
using the -e option to the linker, or in a linker script.

• IDNT, .ident and NAME pseudo-ops
The MRI IDNT, .ident and NAME pseudo-ops assign a module name to the output file.
This is not supported by other object file formats.

• ORG pseudo-op
The m68k MRI ORG pseudo-op begins an absolute section at a given address. This
differs from the usual as .org pseudo-op, which changes the location within the current
section. Absolute sections are not supported by other object file formats. The address
of a section may be assigned within a linker script.

There are some other features of the MRI assembler which are not supported by as,
typically either because they are difficult or because they seem of little consequence. Some
of these may be supported in future releases.
• EBCDIC strings

EBCDIC strings are not supported.
• packed binary coded decimal

Packed binary coded decimal is not supported. This means that the DC.P and DCB.P
pseudo-ops are not supported.

• FEQU pseudo-op
The m68k FEQU pseudo-op is not supported.

• NOOBJ pseudo-op
The m68k NOOBJ pseudo-op is not supported.

• OPT branch control options
The m68k OPT branch control options—B, BRS, BRB, BRL, and BRW—are ignored. as
automatically relaxes all branches, whether forward or backward, to an appropriate
size, so these options serve no purpose.

14 Using as

• OPT list control options

The following m68k OPT list control options are ignored: C, CEX, CL, CRE, E, G, I, M,
MEX, MC, MD, X.

• other OPT options

The following m68k OPT options are ignored: NEST, O, OLD, OP, P, PCO, PCR, PCS, R.

• OPT D option is default

The m68k OPT D option is the default, unlike the MRI assembler. OPT NOD may be used
to turn it off.

• XREF pseudo-op.

The m68k XREF pseudo-op is ignored.

• .debug pseudo-op

The i960 .debug pseudo-op is not supported.

• .extended pseudo-op

The i960 .extended pseudo-op is not supported.

• .list pseudo-op.

The various options of the i960 .list pseudo-op are not supported.

• .optimize pseudo-op

The i960 .optimize pseudo-op is not supported.

• .output pseudo-op

The i960 .output pseudo-op is not supported.

• .setreal pseudo-op

The i960 .setreal pseudo-op is not supported.

2.8 Dependency tracking: --MD

as can generate a dependency file for the file it creates. This file consists of a single rule
suitable for make describing the dependencies of the main source file.

The rule is written to the file named in its argument.

This feature is used in the automatic updating of makefiles.

2.9 Name the Object File: -o

There is always one object file output when you run as. By default it has the name
‘a.out’ (or ‘b.out’, for Intel 960 targets only). You use this option (which takes exactly
one filename) to give the object file a different name.

Whatever the object file is called, as overwrites any existing file of the same name.

Chapter 2: Command-Line Options 15

2.10 Join Data and Text Sections: -R

-R tells as to write the object file as if all data-section data lives in the text section. This
is only done at the very last moment: your binary data are the same, but data section parts
are relocated differently. The data section part of your object file is zero bytes long because
all its bytes are appended to the text section. (See Chapter 4 [Sections and Relocation],
page 23.)

When you specify -R it would be possible to generate shorter address displacements
(because we do not have to cross between text and data section). We refrain from doing
this simply for compatibility with older versions of as. In future, -R may work this way.

When as is configured for COFF output, this option is only useful if you use sections
named ‘.text’ and ‘.data’.

-R is not supported for any of the HPPA targets. Using -R generates a warning from as.

2.11 Display Assembly Statistics: --statistics

Use ‘--statistics’ to display two statistics about the resources used by as: the max-
imum amount of space allocated during the assembly (in bytes), and the total execution
time taken for the assembly (in cpu seconds).

2.12 Compatible output: --traditional-format

For some targets, the output of as is different in some ways from the output of some
existing assembler. This switch requests as to use the traditional format instead.

For example, it disables the exception frame optimizations which as normally does by
default on gcc output.

2.13 Announce Version: -v

You can find out what version of as is running by including the option ‘-v’ (which you
can also spell as ‘-version’) on the command line.

2.14 Control Warnings: -W, --warn, --no-warn,
--fatal-warnings

as should never give a warning or error message when assembling compiler output. But
programs written by people often cause as to give a warning that a particular assumption
was made. All such warnings are directed to the standard error file.

16 Using as

If you use the -W and --no-warn options, no warnings are issued. This only affects the
warning messages: it does not change any particular of how as assembles your file. Errors,
which stop the assembly, are still reported.

If you use the --fatal-warnings option, as considers files that generate warnings to be
in error.

You can switch these options off again by specifying --warn, which causes warnings to
be output as usual.

2.15 Generate Object File in Spite of Errors: -Z

After an error message, as normally produces no output. If for some reason you are
interested in object file output even after as gives an error message on your program,
use the ‘-Z’ option. If there are any errors, as continues anyways, and writes an object
file after a final warning message of the form ‘n errors, m warnings, generating bad
object file.’

Chapter 3: Syntax 17

3 Syntax

This chapter describes the machine-independent syntax allowed in a source file. as
syntax is similar to what many other assemblers use; it is inspired by the BSD 4.2 assembler,
except that as does not assemble Vax bit-fields.

3.1 Preprocessing

The as internal preprocessor:

• adjusts and removes extra whitespace. It leaves one space or tab before the keywords
on a line, and turns any other whitespace on the line into a single space.

• removes all comments, replacing them with a single space, or an appropriate number
of newlines.

• converts character constants into the appropriate numeric values.

It does not do macro processing, include file handling, or anything else you may get
from your C compiler’s preprocessor. You can do include file processing with the .include
directive (see Section 7.36 [.include], page 43). You can use the gnu C compiler driver
to get other “CPP” style preprocessing, by giving the input file a ‘.S’ suffix. See section
“Options Controlling the Kind of Output” in Using GNU CC .

Excess whitespace, comments, and character constants cannot be used in the portions
of the input text that are not preprocessed.

If the first line of an input file is #NO_APP or if you use the ‘-f’ option, whitespace
and comments are not removed from the input file. Within an input file, you can ask for
whitespace and comment removal in specific portions of the by putting a line that says
#APP before the text that may contain whitespace or comments, and putting a line that
says #NO_APP after this text. This feature is mainly intend to support asm statements in
compilers whose output is otherwise free of comments and whitespace.

3.2 Whitespace

Whitespace is one or more blanks or tabs, in any order. Whitespace is used to separate
symbols, and to make programs neater for people to read. Unless within character constants
(see Section 3.6.1 [Character Constants], page 19), any whitespace means the same as
exactly one space.

3.3 Comments

There are two ways of rendering comments to as. In both cases the comment is equivalent
to one space.

18 Using as

Anything from ‘/*’ through the next ‘*/’ is a comment. This means you may not nest
these comments.

/*
The only way to include a newline (’\n’) in a comment
is to use this sort of comment.

*/

/* This sort of comment does not nest. */

Anything from the line comment character to the next newline is considered a comment
and is ignored. The line comment character is ‘;’ for the AMD 29K family; ‘;’ on the ARC;
‘@’ on the ARM; ‘;’ for the H8/300 family; ‘!’ for the H8/500 family; ‘;’ for the HPPA; ‘#’
on the i386 and x86-64; ‘#’ on the i960; ‘;’ for picoJava; ‘!’ for the Hitachi SH; ‘!’ on the
SPARC; ‘#’ on the m32r; ‘|’ on the 680x0; ‘#’ on the 68HC11 and 68HC12; ‘#’ on the Vax;
‘!’ for the Z8000; ‘#’ on the V850; see Chapter 8 [Machine Dependencies], page 61.

On some machines there are two different line comment characters. One character only
begins a comment if it is the first non-whitespace character on a line, while the other always
begins a comment.

The V850 assembler also supports a double dash as starting a comment that extends to
the end of the line.

‘--’;

To be compatible with past assemblers, lines that begin with ‘#’ have a special inter-
pretation. Following the ‘#’ should be an absolute expression (see Chapter 6 [Expressions],
page 33): the logical line number of the next line. Then a string (see Section 3.6.1.1 [Strings],
page 20) is allowed: if present it is a new logical file name. The rest of the line, if any,
should be whitespace.

If the first non-whitespace characters on the line are not numeric, the line is ignored.
(Just like a comment.)

This is an ordinary comment.
42-6 "new_file_name" # New logical file name

This is logical line # 36.

This feature is deprecated, and may disappear from future versions of as.

3.4 Symbols

A symbol is one or more characters chosen from the set of all letters (both upper and
lower case), digits and the three characters ‘_.$’. On most machines, you can also use $
in symbol names; exceptions are noted in Chapter 8 [Machine Dependencies], page 61. No
symbol may begin with a digit. Case is significant. There is no length limit: all characters
are significant. Symbols are delimited by characters not in that set, or by the beginning of
a file (since the source program must end with a newline, the end of a file is not a possible
symbol delimiter). See Chapter 5 [Symbols], page 29.

Chapter 3: Syntax 19

3.5 Statements

A statement ends at a newline character (‘\n’) or line separator character. (The line
separator is usually ‘;’, unless this conflicts with the comment character; see Chapter 8
[Machine Dependencies], page 61.) The newline or separator character is considered part
of the preceding statement. Newlines and separators within character constants are an
exception: they do not end statements.

It is an error to end any statement with end-of-file: the last character of any input file
should be a newline.

An empty statement is allowed, and may include whitespace. It is ignored.
A statement begins with zero or more labels, optionally followed by a key symbol which

determines what kind of statement it is. The key symbol determines the syntax of the rest
of the statement. If the symbol begins with a dot ‘.’ then the statement is an assembler
directive: typically valid for any computer. If the symbol begins with a letter the statement
is an assembly language instruction: it assembles into a machine language instruction.
Different versions of as for different computers recognize different instructions. In fact,
the same symbol may represent a different instruction in a different computer’s assembly
language.

A label is a symbol immediately followed by a colon (:). Whitespace before a label or
after a colon is permitted, but you may not have whitespace between a label’s symbol and
its colon. See Section 5.1 [Labels], page 29.

For HPPA targets, labels need not be immediately followed by a colon, but the definition
of a label must begin in column zero. This also implies that only one label may be defined
on each line.

label: .directive followed by something
another_label: # This is an empty statement.

instruction operand_1, operand_2, ...

3.6 Constants

A constant is a number, written so that its value is known by inspection, without knowing
any context. Like this:

.byte 74, 0112, 092, 0x4A, 0X4a, ’J, ’\J # All the same value.

.ascii "Ring the bell\7" # A string constant.

.octa 0x123456789abcdef0123456789ABCDEF0 # A bignum.

.float 0f-314159265358979323846264338327\
95028841971.693993751E-40 # - pi, a flonum.

3.6.1 Character Constants

There are two kinds of character constants. A character stands for one character in one
byte and its value may be used in numeric expressions. String constants (properly called
string literals) are potentially many bytes and their values may not be used in arithmetic
expressions.

20 Using as

3.6.1.1 Strings

A string is written between double-quotes. It may contain double-quotes or null charac-
ters. The way to get special characters into a string is to escape these characters: precede
them with a backslash ‘\’ character. For example ‘\\’ represents one backslash: the first \
is an escape which tells as to interpret the second character literally as a backslash (which
prevents as from recognizing the second \ as an escape character). The complete list of
escapes follows.

\b Mnemonic for backspace; for ASCII this is octal code 010.

\f Mnemonic for FormFeed; for ASCII this is octal code 014.

\n Mnemonic for newline; for ASCII this is octal code 012.

\r Mnemonic for carriage-Return; for ASCII this is octal code 015.

\t Mnemonic for horizontal Tab; for ASCII this is octal code 011.

\ digit digit digit
An octal character code. The numeric code is 3 octal digits. For compatibility
with other Unix systems, 8 and 9 are accepted as digits: for example, \008 has
the value 010, and \009 the value 011.

\x hex-digits...
A hex character code. All trailing hex digits are combined. Either upper or
lower case x works.

\\ Represents one ‘\’ character.

\" Represents one ‘"’ character. Needed in strings to represent this character,
because an unescaped ‘"’ would end the string.

\ anything-else
Any other character when escaped by \ gives a warning, but assembles as if the
‘\’ was not present. The idea is that if you used an escape sequence you clearly
didn’t want the literal interpretation of the following character. However as
has no other interpretation, so as knows it is giving you the wrong code and
warns you of the fact.

Which characters are escapable, and what those escapes represent, varies widely among
assemblers. The current set is what we think the BSD 4.2 assembler recognizes, and is
a subset of what most C compilers recognize. If you are in doubt, do not use an escape
sequence.

3.6.1.2 Characters

A single character may be written as a single quote immediately followed by that char-
acter. The same escapes apply to characters as to strings. So if you want to write the
character backslash, you must write ’\\ where the first \ escapes the second \. As you can
see, the quote is an acute accent, not a grave accent. A newline immediately following an

Chapter 3: Syntax 21

acute accent is taken as a literal character and does not count as the end of a statement.
The value of a character constant in a numeric expression is the machine’s byte-wide code
for that character. as assumes your character code is ASCII: ’A means 65, ’B means 66,
and so on.

3.6.2 Number Constants

as distinguishes three kinds of numbers according to how they are stored in the target
machine. Integers are numbers that would fit into an int in the C language. Bignums are
integers, but they are stored in more than 32 bits. Flonums are floating point numbers,
described below.

3.6.2.1 Integers

A binary integer is ‘0b’ or ‘0B’ followed by zero or more of the binary digits ‘01’.
An octal integer is ‘0’ followed by zero or more of the octal digits (‘01234567’).
A decimal integer starts with a non-zero digit followed by zero or more digits (‘0123456789’).
A hexadecimal integer is ‘0x’ or ‘0X’ followed by one or more hexadecimal digits chosen

from ‘0123456789abcdefABCDEF’.
Integers have the usual values. To denote a negative integer, use the prefix operator ‘-’

discussed under expressions (see Section 6.2.3 [Prefix Operators], page 34).

3.6.2.2 Bignums

A bignum has the same syntax and semantics as an integer except that the number (or
its negative) takes more than 32 bits to represent in binary. The distinction is made because
in some places integers are permitted while bignums are not.

3.6.2.3 Flonums

A flonum represents a floating point number. The translation is indirect: a decimal
floating point number from the text is converted by as to a generic binary floating point
number of more than sufficient precision. This generic floating point number is converted
to a particular computer’s floating point format (or formats) by a portion of as specialized
to that computer.

A flonum is written by writing (in order)
• The digit ‘0’. (‘0’ is optional on the HPPA.)
• A letter, to tell as the rest of the number is a flonum. e is recommended. Case is not

important.
On the H8/300, H8/500, Hitachi SH, and AMD 29K architectures, the letter must be
one of the letters ‘DFPRSX’ (in upper or lower case).

22 Using as

On the ARC, the letter must be one of the letters ‘DFRS’ (in upper or lower case).
On the Intel 960 architecture, the letter must be one of the letters ‘DFT’ (in upper or
lower case).
On the HPPA architecture, the letter must be ‘E’ (upper case only).

• An optional sign: either ‘+’ or ‘-’.
• An optional integer part: zero or more decimal digits.
• An optional fractional part: ‘.’ followed by zero or more decimal digits.
• An optional exponent, consisting of:
• An ‘E’ or ‘e’.
• Optional sign: either ‘+’ or ‘-’.
• One or more decimal digits.

At least one of the integer part or the fractional part must be present. The floating point
number has the usual base-10 value.

as does all processing using integers. Flonums are computed independently of any
floating point hardware in the computer running as.

Chapter 4: Sections and Relocation 23

4 Sections and Relocation

4.1 Background

Roughly, a section is a range of addresses, with no gaps; all data “in” those addresses
is treated the same for some particular purpose. For example there may be a “read only”
section.

The linker ld reads many object files (partial programs) and combines their contents to
form a runnable program. When as emits an object file, the partial program is assumed to
start at address 0. ld assigns the final addresses for the partial program, so that different
partial programs do not overlap. This is actually an oversimplification, but it suffices to
explain how as uses sections.

ld moves blocks of bytes of your program to their run-time addresses. These blocks
slide to their run-time addresses as rigid units; their length does not change and neither
does the order of bytes within them. Such a rigid unit is called a section. Assigning run-
time addresses to sections is called relocation. It includes the task of adjusting mentions
of object-file addresses so they refer to the proper run-time addresses. For the H8/300 and
H8/500, and for the Hitachi SH, as pads sections if needed to ensure they end on a word
(sixteen bit) boundary.

An object file written by as has at least three sections, any of which may be empty.
These are named text, data and bss sections.

When it generates COFF output, as can also generate whatever other named sections
you specify using the ‘.section’ directive (see Section 7.65 [.section], page 51). If you do
not use any directives that place output in the ‘.text’ or ‘.data’ sections, these sections
still exist, but are empty.

When as generates SOM or ELF output for the HPPA, as can also generate what-
ever other named sections you specify using the ‘.space’ and ‘.subspace’ directives. See
HP9000 Series 800 Assembly Language Reference Manual (HP 92432-90001) for details on
the ‘.space’ and ‘.subspace’ assembler directives.

Additionally, as uses different names for the standard text, data, and bss sections
when generating SOM output. Program text is placed into the ‘$CODE$’ section, data
into ‘$DATA$’, and BSS into ‘BSS’.

Within the object file, the text section starts at address 0, the data section follows, and
the bss section follows the data section.

When generating either SOM or ELF output files on the HPPA, the text section starts
at address 0, the data section at address 0x4000000, and the bss section follows the data
section.

To let ld know which data changes when the sections are relocated, and how to change
that data, as also writes to the object file details of the relocation needed. To perform
relocation ld must know, each time an address in the object file is mentioned:
• Where in the object file is the beginning of this reference to an address?

24 Using as

• How long (in bytes) is this reference?

• Which section does the address refer to? What is the numeric value of
(address) − (start-address of section)?

• Is the reference to an address “Program-Counter relative”?

In fact, every address as ever uses is expressed as

(section) + (offset into section)

Further, most expressions as computes have this section-relative nature. (For some object
formats, such as SOM for the HPPA, some expressions are symbol-relative instead.)

In this manual we use the notation {secname N} to mean “offset N into section secname.”

Apart from text, data and bss sections you need to know about the absolute section.
When ld mixes partial programs, addresses in the absolute section remain unchanged. For
example, address {absolute 0} is “relocated” to run-time address 0 by ld. Although the
linker never arranges two partial programs’ data sections with overlapping addresses after
linking, by definition their absolute sections must overlap. Address {absolute 239} in
one part of a program is always the same address when the program is running as address
{absolute 239} in any other part of the program.

The idea of sections is extended to the undefined section. Any address whose section is
unknown at assembly time is by definition rendered {undefined U}—where U is filled in
later. Since numbers are always defined, the only way to generate an undefined address is
to mention an undefined symbol. A reference to a named common block would be such a
symbol: its value is unknown at assembly time so it has section undefined.

By analogy the word section is used to describe groups of sections in the linked program.
ld puts all partial programs’ text sections in contiguous addresses in the linked program.
It is customary to refer to the text section of a program, meaning all the addresses of all
partial programs’ text sections. Likewise for data and bss sections.

Some sections are manipulated by ld; others are invented for use of as and have no
meaning except during assembly.

4.2 Linker Sections

ld deals with just four kinds of sections, summarized below.

named sections
text section
data section

These sections hold your program. as and ld treat them as separate but equal
sections. Anything you can say of one section is true another. When the pro-
gram is running, however, it is customary for the text section to be unalterable.
The text section is often shared among processes: it contains instructions, con-
stants and the like. The data section of a running program is usually alterable:
for example, C variables would be stored in the data section.

Chapter 4: Sections and Relocation 25

bss section
This section contains zeroed bytes when your program begins running. It is
used to hold uninitialized variables or common storage. The length of each
partial program’s bss section is important, but because it starts out containing
zeroed bytes there is no need to store explicit zero bytes in the object file. The
bss section was invented to eliminate those explicit zeros from object files.

absolute section
Address 0 of this section is always “relocated” to runtime address 0. This
is useful if you want to refer to an address that ld must not change when
relocating. In this sense we speak of absolute addresses being “unrelocatable”:
they do not change during relocation.

undefined section
This “section” is a catch-all for address references to objects not in the preceding
sections.

An idealized example of three relocatable sections follows. The example uses the tradi-
tional section names ‘.text’ and ‘.data’. Memory addresses are on the horizontal axis.
Partial program #1:
text data bss

ttttt dddd 00

Partial program #2:
text data bss
TTT DDDD 000

linked program:
text data bss
TTT ttttt dddd DDDD 00000 . . .

addresses:
0. . .

4.3 Assembler Internal Sections

These sections are meant only for the internal use of as. They have no meaning at
run-time. You do not really need to know about these sections for most purposes; but they
can be mentioned in as warning messages, so it might be helpful to have an idea of their
meanings to as. These sections are used to permit the value of every expression in your
assembly language program to be a section-relative address.

ASSEMBLER-INTERNAL-LOGIC-ERROR!
An internal assembler logic error has been found. This means there is a bug in
the assembler.

expr section
The assembler stores complex expression internally as combinations of symbols.
When it needs to represent an expression as a symbol, it puts it in the expr
section.

26 Using as

4.4 Sub-Sections

Assembled bytes conventionally fall into two sections: text and data. You may have
separate groups of data in named sections that you want to end up near to each other in
the object file, even though they are not contiguous in the assembler source. as allows you
to use subsections for this purpose. Within each section, there can be numbered subsections
with values from 0 to 8192. Objects assembled into the same subsection go into the object
file together with other objects in the same subsection. For example, a compiler might want
to store constants in the text section, but might not want to have them interspersed with
the program being assembled. In this case, the compiler could issue a ‘.text 0’ before each
section of code being output, and a ‘.text 1’ before each group of constants being output.

Subsections are optional. If you do not use subsections, everything goes in subsection
number zero.

Each subsection is zero-padded up to a multiple of four bytes. (Subsections may be
padded a different amount on different flavors of as.)

Subsections appear in your object file in numeric order, lowest numbered to highest.
(All this to be compatible with other people’s assemblers.) The object file contains no
representation of subsections; ld and other programs that manipulate object files see no
trace of them. They just see all your text subsections as a text section, and all your data
subsections as a data section.

To specify which subsection you want subsequent statements assembled into, use a nu-
meric argument to specify it, in a ‘.text expression’ or a ‘.data expression’ statement.
When generating COFF output, you can also use an extra subsection argument with ar-
bitrary named sections: ‘.section name, expression’. Expression should be an absolute
expression. (See Chapter 6 [Expressions], page 33.) If you just say ‘.text’ then ‘.text 0’
is assumed. Likewise ‘.data’ means ‘.data 0’. Assembly begins in text 0. For instance:

.text 0 # The default subsection is text 0 anyway.

.ascii "This lives in the first text subsection. *"

.text 1

.ascii "But this lives in the second text subsection."

.data 0

.ascii "This lives in the data section,"

.ascii "in the first data subsection."

.text 0

.ascii "This lives in the first text section,"

.ascii "immediately following the asterisk (*)."

Each section has a location counter incremented by one for every byte assembled into
that section. Because subsections are merely a convenience restricted to as there is no
concept of a subsection location counter. There is no way to directly manipulate a location
counter—but the .align directive changes it, and any label definition captures its current
value. The location counter of the section where statements are being assembled is said to
be the active location counter.

4.5 bss Section

Chapter 4: Sections and Relocation 27

The bss section is used for local common variable storage. You may allocate address
space in the bss section, but you may not dictate data to load into it before your program
executes. When your program starts running, all the contents of the bss section are zeroed
bytes.

The .lcomm pseudo-op defines a symbol in the bss section; see Section 7.41 [.lcomm],
page 44.

The .comm pseudo-op may be used to declare a common symbol, which is another form
of uninitialized symbol; see See Section 7.8 [.comm], page 37.

When assembling for a target which supports multiple sections, such as ELF or COFF,
you may switch into the .bss section and define symbols as usual; see Section 7.65
[.section], page 51. You may only assemble zero values into the section. Typically the
section will only contain symbol definitions and .skip directives (see Section 7.73 [.skip],
page 54).

28 Using as

Chapter 5: Symbols 29

5 Symbols

Symbols are a central concept: the programmer uses symbols to name things, the linker
uses symbols to link, and the debugger uses symbols to debug.

Warning: as does not place symbols in the object file in the same order they
were declared. This may break some debuggers.

5.1 Labels

A label is written as a symbol immediately followed by a colon ‘:’. The symbol then
represents the current value of the active location counter, and is, for example, a suitable
instruction operand. You are warned if you use the same symbol to represent two different
locations: the first definition overrides any other definitions.

On the HPPA, the usual form for a label need not be immediately followed by a colon,
but instead must start in column zero. Only one label may be defined on a single line.
To work around this, the HPPA version of as also provides a special directive .label for
defining labels more flexibly.

5.2 Giving Symbols Other Values

A symbol can be given an arbitrary value by writing a symbol, followed by an equals
sign ‘=’, followed by an expression (see Chapter 6 [Expressions], page 33). This is equivalent
to using the .set directive. See Section 7.67 [.set], page 52.

5.3 Symbol Names

Symbol names begin with a letter or with one of ‘._’. On most machines, you can also
use $ in symbol names; exceptions are noted in Chapter 8 [Machine Dependencies], page 61.
That character may be followed by any string of digits, letters, dollar signs (unless otherwise
noted in Chapter 8 [Machine Dependencies], page 61), and underscores. For the AMD 29K
family, ‘?’ is also allowed in the body of a symbol name, though not at its beginning.

Case of letters is significant: foo is a different symbol name than Foo.
Each symbol has exactly one name. Each name in an assembly language program refers

to exactly one symbol. You may use that symbol name any number of times in a program.

Local Symbol Names

Local symbols help compilers and programmers use names temporarily. There are ten
local symbol names, which are re-used throughout the program. You may refer to them
using the names ‘0’ ‘1’ . . . ‘9’. To define a local symbol, write a label of the form ‘N:’
(where N represents any digit). To refer to the most recent previous definition of that

30 Using as

symbol write ‘Nb’, using the same digit as when you defined the label. To refer to the next
definition of a local label, write ‘Nf’—where N gives you a choice of 10 forward references.
The ‘b’ stands for “backwards” and the ‘f’ stands for “forwards”.

Local symbols are not emitted by the current gnu C compiler.

There is no restriction on how you can use these labels, but remember that at any point
in the assembly you can refer to at most 10 prior local labels and to at most 10 forward
local labels.

Local symbol names are only a notation device. They are immediately transformed into
more conventional symbol names before the assembler uses them. The symbol names stored
in the symbol table, appearing in error messages and optionally emitted to the object file
have these parts:

L All local labels begin with ‘L’. Normally both as and ld forget symbols that
start with ‘L’. These labels are used for symbols you are never intended to see.
If you use the ‘-L’ option then as retains these symbols in the object file. If
you also instruct ld to retain these symbols, you may use them in debugging.

digit If the label is written ‘0:’ then the digit is ‘0’. If the label is written ‘1:’ then
the digit is ‘1’. And so on up through ‘9:’.

C-A This unusual character is included so you do not accidentally invent a symbol
of the same name. The character has ASCII value ‘\001’.

ordinal number
This is a serial number to keep the labels distinct. The first ‘0:’ gets the number
‘1’; The 15th ‘0:’ gets the number ‘15’; etc.. Likewise for the other labels ‘1:’
through ‘9:’.

For instance, the first 1: is named L1C-A1, the 44th 3: is named L3C-A44.

5.4 The Special Dot Symbol

The special symbol ‘.’ refers to the current address that as is assembling into. Thus,
the expression ‘melvin: .long .’ defines melvin to contain its own address. Assigning a
value to . is treated the same as a .org directive. Thus, the expression ‘.=.+4’ is the same
as saying ‘.space 4’.

5.5 Symbol Attributes

Every symbol has, as well as its name, the attributes “Value” and “Type”. Depending
on output format, symbols can also have auxiliary attributes.

If you use a symbol without defining it, as assumes zero for all these attributes, and
probably won’t warn you. This makes the symbol an externally defined symbol, which is
generally what you would want.

Chapter 5: Symbols 31

5.5.1 Value

The value of a symbol is (usually) 32 bits. For a symbol which labels a location in the
text, data, bss or absolute sections the value is the number of addresses from the start of
that section to the label. Naturally for text, data and bss sections the value of a symbol
changes as ld changes section base addresses during linking. Absolute symbols’ values do
not change during linking: that is why they are called absolute.

The value of an undefined symbol is treated in a special way. If it is 0 then the symbol
is not defined in this assembler source file, and ld tries to determine its value from other
files linked into the same program. You make this kind of symbol simply by mentioning a
symbol name without defining it. A non-zero value represents a .comm common declaration.
The value is how much common storage to reserve, in bytes (addresses). The symbol refers
to the first address of the allocated storage.

5.5.2 Type

The type attribute of a symbol contains relocation (section) information, any flag settings
indicating that a symbol is external, and (optionally), other information for linkers and
debuggers. The exact format depends on the object-code output format in use.

5.5.3 Symbol Attributes: a.out

5.5.3.1 Descriptor

This is an arbitrary 16-bit value. You may establish a symbol’s descriptor value by using
a .desc statement (see Section 7.11 [.desc], page 37). A descriptor value means nothing
to as.

5.5.3.2 Other

This is an arbitrary 8-bit value. It means nothing to as.

5.5.4 Symbol Attributes for COFF

The COFF format supports a multitude of auxiliary symbol attributes; like the primary
symbol attributes, they are set between .def and .endef directives.

5.5.4.1 Primary Attributes

The symbol name is set with .def; the value and type, respectively, with .val and
.type.

32 Using as

5.5.4.2 Auxiliary Attributes

The as directives .dim, .line, .scl, .size, and .tag can generate auxiliary symbol
table information for COFF.

5.5.5 Symbol Attributes for SOM

The SOM format for the HPPA supports a multitude of symbol attributes set with the
.EXPORT and .IMPORT directives.

The attributes are described in HP9000 Series 800 Assembly Language Reference Manual
(HP 92432-90001) under the IMPORT and EXPORT assembler directive documentation.

Chapter 6: Expressions 33

6 Expressions

An expression specifies an address or numeric value. Whitespace may precede and/or
follow an expression.

The result of an expression must be an absolute number, or else an offset into a particular
section. If an expression is not absolute, and there is not enough information when as sees
the expression to know its section, a second pass over the source program might be necessary
to interpret the expression—but the second pass is currently not implemented. as aborts
with an error message in this situation.

6.1 Empty Expressions

An empty expression has no value: it is just whitespace or null. Wherever an absolute
expression is required, you may omit the expression, and as assumes a value of (absolute)
0. This is compatible with other assemblers.

6.2 Integer Expressions

An integer expression is one or more arguments delimited by operators.

6.2.1 Arguments

Arguments are symbols, numbers or subexpressions. In other contexts arguments are
sometimes called “arithmetic operands”. In this manual, to avoid confusing them with the
“instruction operands” of the machine language, we use the term “argument” to refer to
parts of expressions only, reserving the word “operand” to refer only to machine instruction
operands.

Symbols are evaluated to yield {section NNN} where section is one of text, data, bss,
absolute, or undefined. NNN is a signed, 2’s complement 32 bit integer.

Numbers are usually integers.
A number can be a flonum or bignum. In this case, you are warned that only the low

order 32 bits are used, and as pretends these 32 bits are an integer. You may write integer-
manipulating instructions that act on exotic constants, compatible with other assemblers.

Subexpressions are a left parenthesis ‘(’ followed by an integer expression, followed by a
right parenthesis ‘)’; or a prefix operator followed by an argument.

6.2.2 Operators

Operators are arithmetic functions, like + or %. Prefix operators are followed by an
argument. Infix operators appear between their arguments. Operators may be preceded
and/or followed by whitespace.

34 Using as

6.2.3 Prefix Operator

as has the following prefix operators. They each take one argument, which must be
absolute.

- Negation. Two’s complement negation.

~ Complementation. Bitwise not.

6.2.4 Infix Operators

Infix operators take two arguments, one on either side. Operators have precedence, but
operations with equal precedence are performed left to right. Apart from + or -, both
arguments must be absolute, and the result is absolute.

1. Highest Precedence

* Multiplication.

/ Division. Truncation is the same as the C operator ‘/’

% Remainder.

<
<< Shift Left. Same as the C operator ‘<<’.

>
>> Shift Right. Same as the C operator ‘>>’.

2. Intermediate precedence

|

Bitwise Inclusive Or.

& Bitwise And.

^ Bitwise Exclusive Or.

! Bitwise Or Not.
3. Lowest Precedence

+ Addition. If either argument is absolute, the result has the section of
the other argument. You may not add together arguments from different
sections.

- Subtraction. If the right argument is absolute, the result has the section
of the left argument. If both arguments are in the same section, the result
is absolute. You may not subtract arguments from different sections.

In short, it’s only meaningful to add or subtract the offsets in an address; you can only
have a defined section in one of the two arguments.

Chapter 7: Assembler Directives 35

7 Assembler Directives

All assembler directives have names that begin with a period (‘.’). The rest of the name
is letters, usually in lower case.

This chapter discusses directives that are available regardless of the target machine
configuration for the gnu assembler. Some machine configurations provide additional di-
rectives. See Chapter 8 [Machine Dependencies], page 61.

7.1 .abort

This directive stops the assembly immediately. It is for compatibility with other assem-
blers. The original idea was that the assembly language source would be piped into the
assembler. If the sender of the source quit, it could use this directive tells as to quit also.
One day .abort will not be supported.

7.2 .ABORT

When producing COFF output, as accepts this directive as a synonym for ‘.abort’.
When producing b.out output, as accepts this directive, but ignores it.

7.3 .align abs-expr, abs-expr, abs-expr

Pad the location counter (in the current subsection) to a particular storage boundary.
The first expression (which must be absolute) is the alignment required, as described below.

The second expression (also absolute) gives the fill value to be stored in the padding
bytes. It (and the comma) may be omitted. If it is omitted, the padding bytes are normally
zero. However, on some systems, if the section is marked as containing code and the fill
value is omitted, the space is filled with no-op instructions.

The third expression is also absolute, and is also optional. If it is present, it is the
maximum number of bytes that should be skipped by this alignment directive. If doing
the alignment would require skipping more bytes than the specified maximum, then the
alignment is not done at all. You can omit the fill value (the second argument) entirely by
simply using two commas after the required alignment; this can be useful if you want the
alignment to be filled with no-op instructions when appropriate.

The way the required alignment is specified varies from system to system. For the
a29k, hppa, m68k, m88k, w65, sparc, and Hitachi SH, and i386 using ELF format, the first
expression is the alignment request in bytes. For example ‘.align 8’ advances the location
counter until it is a multiple of 8. If the location counter is already a multiple of 8, no
change is needed.

For other systems, including the i386 using a.out format, and the arm and strongarm, it
is the number of low-order zero bits the location counter must have after advancement. For

36 Using as

example ‘.align 3’ advances the location counter until it a multiple of 8. If the location
counter is already a multiple of 8, no change is needed.

This inconsistency is due to the different behaviors of the various native assemblers
for these systems which GAS must emulate. GAS also provides .balign and .p2align
directives, described later, which have a consistent behavior across all architectures (but
are specific to GAS).

7.4 .ascii "string". . .

.ascii expects zero or more string literals (see Section 3.6.1.1 [Strings], page 20) sep-
arated by commas. It assembles each string (with no automatic trailing zero byte) into
consecutive addresses.

7.5 .asciz "string". . .

.asciz is just like .ascii, but each string is followed by a zero byte. The “z” in ‘.asciz’
stands for “zero”.

7.6 .balign[wl] abs-expr, abs-expr, abs-expr

Pad the location counter (in the current subsection) to a particular storage boundary.
The first expression (which must be absolute) is the alignment request in bytes. For example
‘.balign 8’ advances the location counter until it is a multiple of 8. If the location counter
is already a multiple of 8, no change is needed.

The second expression (also absolute) gives the fill value to be stored in the padding
bytes. It (and the comma) may be omitted. If it is omitted, the padding bytes are normally
zero. However, on some systems, if the section is marked as containing code and the fill
value is omitted, the space is filled with no-op instructions.

The third expression is also absolute, and is also optional. If it is present, it is the
maximum number of bytes that should be skipped by this alignment directive. If doing
the alignment would require skipping more bytes than the specified maximum, then the
alignment is not done at all. You can omit the fill value (the second argument) entirely by
simply using two commas after the required alignment; this can be useful if you want the
alignment to be filled with no-op instructions when appropriate.

The .balignw and .balignl directives are variants of the .balign directive. The
.balignw directive treats the fill pattern as a two byte word value. The .balignl directives
treats the fill pattern as a four byte longword value. For example, .balignw 4,0x368d will
align to a multiple of 4. If it skips two bytes, they will be filled in with the value 0x368d
(the exact placement of the bytes depends upon the endianness of the processor). If it skips
1 or 3 bytes, the fill value is undefined.

Chapter 7: Assembler Directives 37

7.7 .byte expressions

.byte expects zero or more expressions, separated by commas. Each expression is as-
sembled into the next byte.

7.8 .comm symbol , length

.comm declares a common symbol named symbol. When linking, a common symbol in
one object file may be merged with a defined or common symbol of the same name in
another object file. If ld does not see a definition for the symbol–just one or more common
symbols–then it will allocate length bytes of uninitialized memory. length must be an
absolute expression. If ld sees multiple common symbols with the same name, and they do
not all have the same size, it will allocate space using the largest size.

When using ELF, the .comm directive takes an optional third argument. This is the
desired alignment of the symbol, specified as a byte boundary (for example, an alignment
of 16 means that the least significant 4 bits of the address should be zero). The alignment
must be an absolute expression, and it must be a power of two. If ld allocates uninitialized
memory for the common symbol, it will use the alignment when placing the symbol. If no
alignment is specified, as will set the alignment to the largest power of two less than or
equal to the size of the symbol, up to a maximum of 16.

The syntax for .comm differs slightly on the HPPA. The syntax is ‘symbol .comm, length’;
symbol is optional.

7.9 .data subsection

.data tells as to assemble the following statements onto the end of the data subsection
numbered subsection (which is an absolute expression). If subsection is omitted, it defaults
to zero.

7.10 .def name

Begin defining debugging information for a symbol name; the definition extends until
the .endef directive is encountered.

This directive is only observed when as is configured for COFF format output; when
producing b.out, ‘.def’ is recognized, but ignored.

7.11 .desc symbol, abs-expression

This directive sets the descriptor of the symbol (see Section 5.5 [Symbol Attributes],
page 30) to the low 16 bits of an absolute expression.

38 Using as

The ‘.desc’ directive is not available when as is configured for COFF output; it is only
for a.out or b.out object format. For the sake of compatibility, as accepts it, but produces
no output, when configured for COFF.

7.12 .dim

This directive is generated by compilers to include auxiliary debugging information in
the symbol table. It is only permitted inside .def/.endef pairs.

‘.dim’ is only meaningful when generating COFF format output; when as is generating
b.out, it accepts this directive but ignores it.

7.13 .double flonums

.double expects zero or more flonums, separated by commas. It assembles floating
point numbers. The exact kind of floating point numbers emitted depends on how as is
configured. See Chapter 8 [Machine Dependencies], page 61.

7.14 .eject

Force a page break at this point, when generating assembly listings.

7.15 .else

.else is part of the as support for conditional assembly; see Section 7.35 [.if], page 42.
It marks the beginning of a section of code to be assembled if the condition for the preceding
.if was false.

7.16 .elseif

.elseif is part of the as support for conditional assembly; see Section 7.35 [.if],
page 42. It is shorthand for beginning a new .if block that would otherwise fill the entire
.else section.

7.17 .end

.end marks the end of the assembly file. as does not process anything in the file past
the .end directive.

Chapter 7: Assembler Directives 39

7.18 .endef

This directive flags the end of a symbol definition begun with .def.
‘.endef’ is only meaningful when generating COFF format output; if as is configured

to generate b.out, it accepts this directive but ignores it.

7.19 .endfunc

.endfunc marks the end of a function specified with .func.

7.20 .endif

.endif is part of the as support for conditional assembly; it marks the end of a block
of code that is only assembled conditionally. See Section 7.35 [.if], page 42.

7.21 .equ symbol, expression

This directive sets the value of symbol to expression. It is synonymous with ‘.set’; see
Section 7.67 [.set], page 52.

The syntax for equ on the HPPA is ‘symbol .equ expression’.

7.22 .equiv symbol, expression

The .equiv directive is like .equ and .set, except that the assembler will signal an
error if symbol is already defined.

Except for the contents of the error message, this is roughly equivalent to
.ifdef SYM
.err
.endif
.equ SYM,VAL

7.23 .err

If as assembles a .err directive, it will print an error message and, unless the -Z option
was used, it will not generate an object file. This can be used to signal error an conditionally
compiled code.

7.24 .exitm

Exit early from the current macro definition. See Section 7.49 [Macro], page 46.

40 Using as

7.25 .extern

.extern is accepted in the source program—for compatibility with other assemblers—
but it is ignored. as treats all undefined symbols as external.

7.26 .fail expression

Generates an error or a warning. If the value of the expression is 500 or more, as will
print a warning message. If the value is less than 500, as will print an error message. The
message will include the value of expression. This can occasionally be useful inside complex
nested macros or conditional assembly.

7.27 .file string

.file tells as that we are about to start a new logical file. string is the new file name.
In general, the filename is recognized whether or not it is surrounded by quotes ‘"’; but
if you wish to specify an empty file name, you must give the quotes–"". This statement
may go away in future: it is only recognized to be compatible with old as programs. In
some configurations of as, .file has already been removed to avoid conflicts with other
assemblers. See Chapter 8 [Machine Dependencies], page 61.

7.28 .fill repeat , size , value

result, size and value are absolute expressions. This emits repeat copies of size bytes.
Repeat may be zero or more. Size may be zero or more, but if it is more than 8, then it
is deemed to have the value 8, compatible with other people’s assemblers. The contents of
each repeat bytes is taken from an 8-byte number. The highest order 4 bytes are zero. The
lowest order 4 bytes are value rendered in the byte-order of an integer on the computer as
is assembling for. Each size bytes in a repetition is taken from the lowest order size bytes
of this number. Again, this bizarre behavior is compatible with other people’s assemblers.

size and value are optional. If the second comma and value are absent, value is assumed
zero. If the first comma and following tokens are absent, size is assumed to be 1.

7.29 .float flonums

This directive assembles zero or more flonums, separated by commas. It has the same
effect as .single. The exact kind of floating point numbers emitted depends on how as is
configured. See Chapter 8 [Machine Dependencies], page 61.

Chapter 7: Assembler Directives 41

7.30 .func name[,label]

.func emits debugging information to denote function name, and is ignored unless the
file is assembled with debugging enabled. Only ‘--gstabs’ is currently supported. label
is the entry point of the function and if omitted name prepended with the ‘leading char’
is used. ‘leading char’ is usually _ or nothing, depending on the target. All functions
are currently defined to have void return type. The function must be terminated with
.endfunc.

7.31 .global symbol, .globl symbol

.global makes the symbol visible to ld. If you define symbol in your partial program,
its value is made available to other partial programs that are linked with it. Otherwise,
symbol takes its attributes from a symbol of the same name from another file linked into
the same program.

Both spellings (‘.globl’ and ‘.global’) are accepted, for compatibility with other as-
semblers.

On the HPPA, .global is not always enough to make it accessible to other partial
programs. You may need the HPPA-only .EXPORT directive as well. See Section 8.8.5
[HPPA Assembler Directives], page 84.

7.32 .hidden names

This one of the ELF visibility directives. The other two are .internal (see Section 7.38
[.internal], page 43) and .protected (see Section 7.57 [.protected], page 49).

This directive overrides the named symbols default visibility (which is set by their bind-
ing: local, global or weak). The directive sets the visibility to hidden which means that
the symbols are not visible to other components. Such symbols are always considered to be
protected as well.

7.33 .hword expressions

This expects zero or more expressions, and emits a 16 bit number for each.
This directive is a synonym for ‘.short’; depending on the target architecture, it may

also be a synonym for ‘.word’.

7.34 .ident

This directive is used by some assemblers to place tags in object files. as simply accepts
the directive for source-file compatibility with such assemblers, but does not actually emit
anything for it.

42 Using as

7.35 .if absolute expression

.if marks the beginning of a section of code which is only considered part of the source
program being assembled if the argument (which must be an absolute expression) is non-
zero. The end of the conditional section of code must be marked by .endif (see Section 7.20
[.endif], page 39); optionally, you may include code for the alternative condition, flagged by
.else (see Section 7.15 [.else], page 38). If you have several conditions to check, .elseif
may be used to avoid nesting blocks if/else within each subsequent .else block.

The following variants of .if are also supported:

.ifdef symbol
Assembles the following section of code if the specified symbol has been defined.

.ifc string1,string2
Assembles the following section of code if the two strings are the same. The
strings may be optionally quoted with single quotes. If they are not quoted,
the first string stops at the first comma, and the second string stops at the end
of the line. Strings which contain whitespace should be quoted. The string
comparison is case sensitive.

.ifeq absolute expression
Assembles the following section of code if the argument is zero.

.ifeqs string1,string2
Another form of .ifc. The strings must be quoted using double quotes.

.ifge absolute expression
Assembles the following section of code if the argument is greater than or equal
to zero.

.ifgt absolute expression
Assembles the following section of code if the argument is greater than zero.

.ifle absolute expression
Assembles the following section of code if the argument is less than or equal to
zero.

.iflt absolute expression
Assembles the following section of code if the argument is less than zero.

.ifnc string1,string2.
Like .ifc, but the sense of the test is reversed: this assembles the following
section of code if the two strings are not the same.

.ifndef symbol

.ifnotdef symbol
Assembles the following section of code if the specified symbol has not been
defined. Both spelling variants are equivalent.

.ifne absolute expression
Assembles the following section of code if the argument is not equal to zero (in
other words, this is equivalent to .if).

Chapter 7: Assembler Directives 43

.ifnes string1,string2
Like .ifeqs, but the sense of the test is reversed: this assembles the following
section of code if the two strings are not the same.

7.36 .include "file"

This directive provides a way to include supporting files at specified points in your source
program. The code from file is assembled as if it followed the point of the .include; when
the end of the included file is reached, assembly of the original file continues. You can control
the search paths used with the ‘-I’ command-line option (see Chapter 2 [Command-Line
Options], page 11). Quotation marks are required around file.

7.37 .int expressions

Expect zero or more expressions, of any section, separated by commas. For each expres-
sion, emit a number that, at run time, is the value of that expression. The byte order and
bit size of the number depends on what kind of target the assembly is for.

7.38 .internal names

This one of the ELF visibility directives. The other two are .hidden (see Section 7.32
[.hidden], page 41) and .protected (see Section 7.57 [.protected], page 49).

This directive overrides the named symbols default visibility (which is set by their bind-
ing: local, global or weak). The directive sets the visibility to internal which means that
the symbols are considered to be hidden (ie not visible to other components), and that
some extra, processor specific processing must also be performed upon the symbols as well.

7.39 .irp symbol,values . . .

Evaluate a sequence of statements assigning different values to symbol. The sequence of
statements starts at the .irp directive, and is terminated by an .endr directive. For each
value, symbol is set to value, and the sequence of statements is assembled. If no value is
listed, the sequence of statements is assembled once, with symbol set to the null string. To
refer to symbol within the sequence of statements, use \symbol.

For example, assembling
.irp param,1,2,3
move d\param,sp@-
.endr

is equivalent to assembling
move d1,sp@-
move d2,sp@-
move d3,sp@-

44 Using as

7.40 .irpc symbol,values . . .

Evaluate a sequence of statements assigning different values to symbol. The sequence
of statements starts at the .irpc directive, and is terminated by an .endr directive. For
each character in value, symbol is set to the character, and the sequence of statements is
assembled. If no value is listed, the sequence of statements is assembled once, with symbol
set to the null string. To refer to symbol within the sequence of statements, use \symbol.

For example, assembling
.irpc param,123
move d\param,sp@-
.endr

is equivalent to assembling
move d1,sp@-
move d2,sp@-
move d3,sp@-

7.41 .lcomm symbol , length

Reserve length (an absolute expression) bytes for a local common denoted by symbol.
The section and value of symbol are those of the new local common. The addresses are
allocated in the bss section, so that at run-time the bytes start off zeroed. Symbol is not
declared global (see Section 7.31 [.global], page 41), so is normally not visible to ld.

Some targets permit a third argument to be used with .lcomm. This argument specifies
the desired alignment of the symbol in the bss section.

The syntax for .lcomm differs slightly on the HPPA. The syntax is ‘symbol .lcomm,
length’; symbol is optional.

7.42 .lflags

as accepts this directive, for compatibility with other assemblers, but ignores it.

7.43 .line line-number

Change the logical line number. line-number must be an absolute expression. The next
line has that logical line number. Therefore any other statements on the current line (after
a statement separator character) are reported as on logical line number line-number − 1.
One day as will no longer support this directive: it is recognized only for compatibility with
existing assembler programs.

Warning: In the AMD29K configuration of as, this command is not available; use the
synonym .ln in that context.

Chapter 7: Assembler Directives 45

Even though this is a directive associated with the a.out or b.out object-code formats,
as still recognizes it when producing COFF output, and treats ‘.line’ as though it were
the COFF ‘.ln’ if it is found outside a .def/.endef pair.

Inside a .def, ‘.line’ is, instead, one of the directives used by compilers to generate
auxiliary symbol information for debugging.

7.44 .linkonce [type]

Mark the current section so that the linker only includes a single copy of it. This may be
used to include the same section in several different object files, but ensure that the linker
will only include it once in the final output file. The .linkonce pseudo-op must be used
for each instance of the section. Duplicate sections are detected based on the section name,
so it should be unique.

This directive is only supported by a few object file formats; as of this writing, the only
object file format which supports it is the Portable Executable format used on Windows
NT.

The type argument is optional. If specified, it must be one of the following strings. For
example:

.linkonce same_size

Not all types may be supported on all object file formats.

discard Silently discard duplicate sections. This is the default.

one_only Warn if there are duplicate sections, but still keep only one copy.

same_size
Warn if any of the duplicates have different sizes.

same_contents
Warn if any of the duplicates do not have exactly the same contents.

7.45 .ln line-number

‘.ln’ is a synonym for ‘.line’.

7.46 .mri val

If val is non-zero, this tells as to enter MRI mode. If val is zero, this tells as to exit
MRI mode. This change affects code assembled until the next .mri directive, or until the
end of the file. See Section 2.7 [MRI mode], page 12.

46 Using as

7.47 .list

Control (in conjunction with the .nolist directive) whether or not assembly listings
are generated. These two directives maintain an internal counter (which is zero initially).
.list increments the counter, and .nolist decrements it. Assembly listings are generated
whenever the counter is greater than zero.

By default, listings are disabled. When you enable them (with the ‘-a’ command line
option; see Chapter 2 [Command-Line Options], page 11), the initial value of the listing
counter is one.

7.48 .long expressions

.long is the same as ‘.int’, see Section 7.37 [.int], page 43.

7.49 .macro

The commands .macro and .endm allow you to define macros that generate assembly
output. For example, this definition specifies a macro sum that puts a sequence of numbers
into memory:

.macro sum from=0, to=5

.long \from

.if \to-\from
sum "(\from+1)",\to
.endif
.endm

With that definition, ‘SUM 0,5’ is equivalent to this assembly input:
.long 0
.long 1
.long 2
.long 3
.long 4
.long 5

.macro macname

.macro macname macargs ...
Begin the definition of a macro called macname. If your macro definition re-
quires arguments, specify their names after the macro name, separated by com-
mas or spaces. You can supply a default value for any macro argument by
following the name with ‘=deflt’. For example, these are all valid .macro state-
ments:

.macro comm
Begin the definition of a macro called comm, which takes no argu-
ments.

Chapter 7: Assembler Directives 47

.macro plus1 p, p1

.macro plus1 p p1
Either statement begins the definition of a macro called plus1,
which takes two arguments; within the macro definition, write ‘\p’
or ‘\p1’ to evaluate the arguments.

.macro reserve_str p1=0 p2
Begin the definition of a macro called reserve_str, with two argu-
ments. The first argument has a default value, but not the second.
After the definition is complete, you can call the macro either as
‘reserve_str a,b’ (with ‘\p1’ evaluating to a and ‘\p2’ evaluating
to b), or as ‘reserve_str ,b’ (with ‘\p1’ evaluating as the default,
in this case ‘0’, and ‘\p2’ evaluating to b).

When you call a macro, you can specify the argument values either by position,
or by keyword. For example, ‘sum 9,17’ is equivalent to ‘sum to=17, from=9’.

.endm Mark the end of a macro definition.

.exitm Exit early from the current macro definition.

\@ as maintains a counter of how many macros it has executed in this pseudo-
variable; you can copy that number to your output with ‘\@’, but only within
a macro definition.

7.50 .nolist

Control (in conjunction with the .list directive) whether or not assembly listings are
generated. These two directives maintain an internal counter (which is zero initially).
.list increments the counter, and .nolist decrements it. Assembly listings are generated
whenever the counter is greater than zero.

7.51 .octa bignums

This directive expects zero or more bignums, separated by commas. For each bignum,
it emits a 16-byte integer.

The term “octa” comes from contexts in which a “word” is two bytes; hence octa-word
for 16 bytes.

7.52 .org new-lc , fill

Advance the location counter of the current section to new-lc. new-lc is either an absolute
expression or an expression with the same section as the current subsection. That is, you
can’t use .org to cross sections: if new-lc has the wrong section, the .org directive is

48 Using as

ignored. To be compatible with former assemblers, if the section of new-lc is absolute, as
issues a warning, then pretends the section of new-lc is the same as the current subsection.

.org may only increase the location counter, or leave it unchanged; you cannot use .org
to move the location counter backwards.

Because as tries to assemble programs in one pass, new-lc may not be undefined. If you
really detest this restriction we eagerly await a chance to share your improved assembler.

Beware that the origin is relative to the start of the section, not to the start of the
subsection. This is compatible with other people’s assemblers.

When the location counter (of the current subsection) is advanced, the intervening bytes
are filled with fill which should be an absolute expression. If the comma and fill are omitted,
fill defaults to zero.

7.53 .p2align[wl] abs-expr, abs-expr, abs-expr

Pad the location counter (in the current subsection) to a particular storage boundary.
The first expression (which must be absolute) is the number of low-order zero bits the
location counter must have after advancement. For example ‘.p2align 3’ advances the
location counter until it a multiple of 8. If the location counter is already a multiple of 8,
no change is needed.

The second expression (also absolute) gives the fill value to be stored in the padding
bytes. It (and the comma) may be omitted. If it is omitted, the padding bytes are normally
zero. However, on some systems, if the section is marked as containing code and the fill
value is omitted, the space is filled with no-op instructions.

The third expression is also absolute, and is also optional. If it is present, it is the
maximum number of bytes that should be skipped by this alignment directive. If doing
the alignment would require skipping more bytes than the specified maximum, then the
alignment is not done at all. You can omit the fill value (the second argument) entirely by
simply using two commas after the required alignment; this can be useful if you want the
alignment to be filled with no-op instructions when appropriate.

The .p2alignw and .p2alignl directives are variants of the .p2align directive. The
.p2alignw directive treats the fill pattern as a two byte word value. The .p2alignl di-
rectives treats the fill pattern as a four byte longword value. For example, .p2alignw
2,0x368d will align to a multiple of 4. If it skips two bytes, they will be filled in with
the value 0x368d (the exact placement of the bytes depends upon the endianness of the
processor). If it skips 1 or 3 bytes, the fill value is undefined.

7.54 .previous

This is one of the ELF section stack manipulation directives. The others are .section
(see Section 7.65 [Section], page 51), .subsection (see Section 7.78 [SubSection], page 55),
.pushsection (see Section 7.60 [PushSection], page 50), and .popsection (see Section 7.55
[PopSection], page 49).

Chapter 7: Assembler Directives 49

This directive swaps the current section (and subsection) with most recently referenced
section (and subsection) prior to this one. Multiple .previous directives in a row will flip
between two sections (and their subsections).

In terms of the section stack, this directive swaps the current section with the top section
on the section stack.

7.55 .popsection

This is one of the ELF section stack manipulation directives. The others are .section
(see Section 7.65 [Section], page 51), .subsection (see Section 7.78 [SubSection], page 55),
.pushsection (see Section 7.60 [PushSection], page 50), and .previous (see Section 7.54
[Previous], page 48).

This directive replaces the current section (and subsection) with the top section (and
subsection) on the section stack. This section is popped off the stack.

7.56 .print string

as will print string on the standard output during assembly. You must put string in
double quotes.

7.57 .protected names

This one of the ELF visibility directives. The other two are .hidden (see Section 7.32
[Hidden], page 41) and .internal (see Section 7.38 [Internal], page 43).

This directive overrides the named symbols default visibility (which is set by their bind-
ing: local, global or weak). The directive sets the visibility to protected which means
that any references to the symbols from within the components that defines them must
be resolved to the definition in that component, even if a definition in another component
would normally preempt this.

7.58 .psize lines , columns

Use this directive to declare the number of lines—and, optionally, the number of
columns—to use for each page, when generating listings.

If you do not use .psize, listings use a default line-count of 60. You may omit the
comma and columns specification; the default width is 200 columns.

as generates formfeeds whenever the specified number of lines is exceeded (or whenever
you explicitly request one, using .eject).

If you specify lines as 0, no formfeeds are generated save those explicitly specified with
.eject.

50 Using as

7.59 .purgem name

Undefine the macro name, so that later uses of the string will not be expanded. See
Section 7.49 [Macro], page 46.

7.60 .pushsection name , subsection

This is one of the ELF section stack manipulation directives. The others are .section
(see Section 7.65 [Section], page 51), .subsection (see Section 7.78 [SubSection], page 55),
.popsection (see Section 7.55 [PopSection], page 49), and .previous (see Section 7.54
[Previous], page 48).

This directive is a synonym for .section. It pushes the current section (and subsection)
onto the top of the section stack, and then replaces the current section and subsection with
name and subsection.

7.61 .quad bignums

.quad expects zero or more bignums, separated by commas. For each bignum, it emits
an 8-byte integer. If the bignum won’t fit in 8 bytes, it prints a warning message; and just
takes the lowest order 8 bytes of the bignum.

The term “quad” comes from contexts in which a “word” is two bytes; hence quad-word
for 8 bytes.

7.62 .rept count

Repeat the sequence of lines between the .rept directive and the next .endr directive
count times.

For example, assembling

.rept 3

.long 0

.endr

is equivalent to assembling

.long 0

.long 0

.long 0

Chapter 7: Assembler Directives 51

7.63 .sbttl "subheading"

Use subheading as the title (third line, immediately after the title line) when generating
assembly listings.

This directive affects subsequent pages, as well as the current page if it appears within
ten lines of the top of a page.

7.64 .scl class

Set the storage-class value for a symbol. This directive may only be used inside a
.def/.endef pair. Storage class may flag whether a symbol is static or external, or it may
record further symbolic debugging information.

The ‘.scl’ directive is primarily associated with COFF output; when configured to
generate b.out output format, as accepts this directive but ignores it.

7.65 .section name (COFF version)

Use the .section directive to assemble the following code into a section named name.

This directive is only supported for targets that actually support arbitrarily named
sections; on a.out targets, for example, it is not accepted, even with a standard a.out
section name.

For COFF targets, the .section directive is used in one of the following ways:
.section name[, "flags"]
.section name[, subsegment]

If the optional argument is quoted, it is taken as flags to use for the section. Each flag
is a single character. The following flags are recognized:

b bss section (uninitialized data)

n section is not loaded

w writable section

d data section

r read-only section

x executable section

s shared section (meaningful for PE targets)

If no flags are specified, the default flags depend upon the section name. If the section
name is not recognized, the default will be for the section to be loaded and writable.

If the optional argument to the .section directive is not quoted, it is taken as a sub-
segment number (see Section 4.4 [Sub-Sections], page 26).

52 Using as

7.66 .section name (ELF version)

This is one of the ELF section stack manipulation directives. The others are .subsection
(see Section 7.78 [SubSection], page 55), .pushsection (see Section 7.60 [PushSection],
page 50), .popsection (see Section 7.55 [PopSection], page 49), and .previous (see
Section 7.54 [Previous], page 48).

For ELF targets, the .section directive is used like this:
.section name [, "flags"[, @type]]

The optional flags argument is a quoted string which may contain any combination of
the following characters:

a section is allocatable

w section is writable

x section is executable

The optional type argument may contain one of the following constants:

@progbits
section contains data

@nobits section does not contain data (i.e., section only occupies space)

If no flags are specified, the default flags depend upon the section name. If the section
name is not recognized, the default will be for the section to have none of the above flags:
it will not be allocated in memory, nor writable, nor executable. The section will contain
data.

For ELF targets, the assembler supports another type of .section directive for compat-
ibility with the Solaris assembler:

.section "name"[, flags...]

Note that the section name is quoted. There may be a sequence of comma separated
flags:

#alloc section is allocatable

#write section is writable

#execinstr
section is executable

This directive replaces the current section and subsection. The replaced section and
subsection are pushed onto the section stack. See the contents of the gas testsuite directory
gas/testsuite/gas/elf for some examples of how this directive and the other section
stack directives work.

7.67 .set symbol, expression

Set the value of symbol to expression. This changes symbol’s value and type to conform
to expression. If symbol was flagged as external, it remains flagged (see Section 5.5 [Symbol
Attributes], page 30).

Chapter 7: Assembler Directives 53

You may .set a symbol many times in the same assembly.

If you .set a global symbol, the value stored in the object file is the last value stored
into it.

The syntax for set on the HPPA is ‘symbol .set expression’.

7.68 .short expressions

.short is normally the same as ‘.word’. See Section 7.91 [.word], page 59.

In some configurations, however, .short and .word generate numbers of different
lengths; see Chapter 8 [Machine Dependencies], page 61.

7.69 .single flonums

This directive assembles zero or more flonums, separated by commas. It has the same
effect as .float. The exact kind of floating point numbers emitted depends on how as is
configured. See Chapter 8 [Machine Dependencies], page 61.

7.70 .size (COFF version)

This directive is generated by compilers to include auxiliary debugging information in
the symbol table. It is only permitted inside .def/.endef pairs.

‘.size’ is only meaningful when generating COFF format output; when as is generating
b.out, it accepts this directive but ignores it.

7.71 .size name , expression (ELF version)

This directive is used to set the size associated with a symbol name. The size in bytes
is computed from expression which can make use of label arithmetic. This directive is
typically used to set the size of function symbols.

7.72 .sleb128 expressions

sleb128 stands for “signed little endian base 128.” This is a compact, variable length
representation of numbers used by the DWARF symbolic debugging format. See Section 7.85
[Uleb128], page 58.

54 Using as

7.73 .skip size , fill

This directive emits size bytes, each of value fill. Both size and fill are absolute expres-
sions. If the comma and fill are omitted, fill is assumed to be zero. This is the same as
‘.space’.

7.74 .space size , fill

This directive emits size bytes, each of value fill. Both size and fill are absolute expres-
sions. If the comma and fill are omitted, fill is assumed to be zero. This is the same as
‘.skip’.

Warning: .space has a completely different meaning for HPPA targets; use
.block as a substitute. See HP9000 Series 800 Assembly Language Reference
Manual (HP 92432-90001) for the meaning of the .space directive. See Sec-
tion 8.8.5 [HPPA Assembler Directives], page 84, for a summary.

On the AMD 29K, this directive is ignored; it is accepted for compatibility with other
AMD 29K assemblers.

Warning: In most versions of the gnu assembler, the directive .space has the
effect of .block See Chapter 8 [Machine Dependencies], page 61.

7.75 .stabd, .stabn, .stabs

There are three directives that begin ‘.stab’. All emit symbols (see Chapter 5 [Symbols],
page 29), for use by symbolic debuggers. The symbols are not entered in the as hash table:
they cannot be referenced elsewhere in the source file. Up to five fields are required:

string This is the symbol’s name. It may contain any character except ‘\000’, so
is more general than ordinary symbol names. Some debuggers used to code
arbitrarily complex structures into symbol names using this field.

type An absolute expression. The symbol’s type is set to the low 8 bits of this
expression. Any bit pattern is permitted, but ld and debuggers choke on silly
bit patterns.

other An absolute expression. The symbol’s “other” attribute is set to the low 8 bits
of this expression.

desc An absolute expression. The symbol’s descriptor is set to the low 16 bits of this
expression.

value An absolute expression which becomes the symbol’s value.

If a warning is detected while reading a .stabd, .stabn, or .stabs statement, the
symbol has probably already been created; you get a half-formed symbol in your object file.
This is compatible with earlier assemblers!

Chapter 7: Assembler Directives 55

.stabd type , other , desc
The “name” of the symbol generated is not even an empty string. It is a null
pointer, for compatibility. Older assemblers used a null pointer so they didn’t
waste space in object files with empty strings.
The symbol’s value is set to the location counter, relocatably. When your
program is linked, the value of this symbol is the address of the location counter
when the .stabd was assembled.

.stabn type , other , desc , value
The name of the symbol is set to the empty string "".

.stabs string , type , other , desc , value
All five fields are specified.

7.76 .string "str"

Copy the characters in str to the object file. You may specify more than one string
to copy, separated by commas. Unless otherwise specified for a particular machine, the
assembler marks the end of each string with a 0 byte. You can use any of the escape
sequences described in Section 3.6.1.1 [Strings], page 20.

7.77 .struct expression

Switch to the absolute section, and set the section offset to expression, which must be
an absolute expression. You might use this as follows:

.struct 0
field1:

.struct field1 + 4
field2:

.struct field2 + 4
field3:

This would define the symbol field1 to have the value 0, the symbol field2 to have
the value 4, and the symbol field3 to have the value 8. Assembly would be left in the
absolute section, and you would need to use a .section directive of some sort to change to
some other section before further assembly.

7.78 .subsection name

This is one of the ELF section stack manipulation directives. The others are .section
(see Section 7.65 [Section], page 51), .pushsection (see Section 7.60 [PushSection],
page 50), .popsection (see Section 7.55 [PopSection], page 49), and .previous (see
Section 7.54 [Previous], page 48).

This directive replaces the current subsection with name. The current section is not
changed. The replaced subsection is put onto the section stack in place of the then current
top of stack subsection.

56 Using as

7.79 .symver

Use the .symver directive to bind symbols to specific version nodes within a source file.
This is only supported on ELF platforms, and is typically used when assembling files to be
linked into a shared library. There are cases where it may make sense to use this in objects
to be bound into an application itself so as to override a versioned symbol from a shared
library.

For ELF targets, the .symver directive can be used like this:
.symver name, name2@nodename

If the symbol name is defined within the file being assembled, the .symver directive
effectively creates a symbol alias with the name name2@nodename, and in fact the main
reason that we just don’t try and create a regular alias is that the @ character isn’t permitted
in symbol names. The name2 part of the name is the actual name of the symbol by which
it will be externally referenced. The name name itself is merely a name of convenience that
is used so that it is possible to have definitions for multiple versions of a function within
a single source file, and so that the compiler can unambiguously know which version of a
function is being mentioned. The nodename portion of the alias should be the name of a
node specified in the version script supplied to the linker when building a shared library. If
you are attempting to override a versioned symbol from a shared library, then nodename
should correspond to the nodename of the symbol you are trying to override.

If the symbol name is not defined within the file being assembled, all references to name
will be changed to name2@nodename. If no reference to name is made, name2@nodename
will be removed from the symbol table.

Another usage of the .symver directive is:
.symver name, name2@@nodename

In this case, the symbol name must exist and be defined within the file being assembled.
It is similar to name2@nodename. The difference is name2@@nodename will also be used to
resolve references to name2 by the linker.

The third usage of the .symver directive is:
.symver name, name2@@@nodename

When name is not defined within the file being assembled, it is treated as name2@nodename.
When name is defined within the file being assembled, the symbol name, name, will be
changed to name2@@nodename.

7.80 .tag structname

This directive is generated by compilers to include auxiliary debugging information in
the symbol table. It is only permitted inside .def/.endef pairs. Tags are used to link
structure definitions in the symbol table with instances of those structures.

‘.tag’ is only used when generating COFF format output; when as is generating b.out,
it accepts this directive but ignores it.

Chapter 7: Assembler Directives 57

7.81 .text subsection

Tells as to assemble the following statements onto the end of the text subsection num-
bered subsection, which is an absolute expression. If subsection is omitted, subsection
number zero is used.

7.82 .title "heading"

Use heading as the title (second line, immediately after the source file name and pa-
genumber) when generating assembly listings.

This directive affects subsequent pages, as well as the current page if it appears within
ten lines of the top of a page.

7.83 .type int (COFF version)

This directive, permitted only within .def/.endef pairs, records the integer int as the
type attribute of a symbol table entry.

‘.type’ is associated only with COFF format output; when as is configured for b.out
output, it accepts this directive but ignores it.

7.84 .type name , type description (ELF version)

This directive is used to set the type of symbol name to be either a function symbol or
an object symbol. There are five different syntaxes supported for the type description field,
in order to provide compatibility with various other assemblers. The syntaxes supported
are:

.type <name>,#function

.type <name>,#object

.type <name>,@function

.type <name>,@object

.type <name>,%function

.type <name>,%object

.type <name>,"function"

.type <name>,"object"

.type <name> STT_FUNCTION

.type <name> STT_OBJECT

58 Using as

7.85 .uleb128 expressions

uleb128 stands for “unsigned little endian base 128.” This is a compact, variable length
representation of numbers used by the DWARF symbolic debugging format. See Section 7.72
[Sleb128], page 53.

7.86 .val addr

This directive, permitted only within .def/.endef pairs, records the address addr as
the value attribute of a symbol table entry.

‘.val’ is used only for COFF output; when as is configured for b.out, it accepts this
directive but ignores it.

7.87 .version "string"

This directive creates a .note section and places into it an ELF formatted note of type
NT VERSION. The note’s name is set to string.

7.88 .vtable_entry table, offset

This directive finds or creates a symbol table and creates a VTABLE_ENTRY relocation
for it with an addend of offset.

7.89 .vtable_inherit child, parent

This directive finds the symbol child and finds or creates the symbol parent and then
creates a VTABLE_INHERIT relocation for the parent whose addend is the value of the child
symbol. As a special case the parent name of 0 is treated as refering the *ABS* section.

7.90 .weak names

This directive sets the weak attribute on the comma separated list of symbol names. If
the symbols do not already exist, they will be created.

Chapter 7: Assembler Directives 59

7.91 .word expressions

This directive expects zero or more expressions, of any section, separated by commas.
The size of the number emitted, and its byte order, depend on what target computer

the assembly is for.
Warning: Special Treatment to support Compilers

Machines with a 32-bit address space, but that do less than 32-bit addressing, require
the following special treatment. If the machine of interest to you does 32-bit addressing
(or doesn’t require it; see Chapter 8 [Machine Dependencies], page 61), you can ignore this
issue.

In order to assemble compiler output into something that works, as occasionally does
strange things to ‘.word’ directives. Directives of the form ‘.word sym1-sym2’ are often
emitted by compilers as part of jump tables. Therefore, when as assembles a directive of
the form ‘.word sym1-sym2’, and the difference between sym1 and sym2 does not fit in 16
bits, as creates a secondary jump table, immediately before the next label. This secondary
jump table is preceded by a short-jump to the first byte after the secondary table. This
short-jump prevents the flow of control from accidentally falling into the new table. Inside
the table is a long-jump to sym2. The original ‘.word’ contains sym1 minus the address of
the long-jump to sym2.

If there were several occurrences of ‘.word sym1-sym2’ before the secondary jump table,
all of them are adjusted. If there was a ‘.word sym3-sym4’, that also did not fit in sixteen
bits, a long-jump to sym4 is included in the secondary jump table, and the .word directives
are adjusted to contain sym3 minus the address of the long-jump to sym4; and so on, for as
many entries in the original jump table as necessary.

7.92 Deprecated Directives

One day these directives won’t work. They are included for compatibility with older
assemblers.

.abort

.line

60 Using as

Chapter 8: Machine Dependent Features 61

8 Machine Dependent Features

The machine instruction sets are (almost by definition) different on each machine where
as runs. Floating point representations vary as well, and as often supports a few additional
directives or command-line options for compatibility with other assemblers on a particu-
lar platform. Finally, some versions of as support special pseudo-instructions for branch
optimization.

This chapter discusses most of these differences, though it does not include details on
any machine’s instruction set. For details on that subject, see the hardware manufacturer’s
manual.

62 Using as

8.1 ARC Dependent Features

8.1.1 Options

-marc[5|6|7|8]
This option selects the core processor variant. Using -marc is the same as
-marc5, which is also the default.

arc5 Base instruction set.

arc6 Jump-and-link (jl) instruction. No requirement of an instruction
between setting flags and conditional jump. For example:

mov.f r0,r1
beq foo

arc7 Break (brk) and sleep (sleep) instructions.

arc8 Software interrupt (swi) instruction.

Note: the .option directive can to be used to select a core variant from within
assembly code.

-EB This option specifies that the output generated by the assembler should be
marked as being encoded for a big-endian processor.

-EL This option specifies that the output generated by the assembler should be
marked as being encoded for a little-endian processor - this is the default.

8.1.2 Syntax

8.1.2.1 Special Characters

TODO

8.1.2.2 Register Names

TODO

8.1.3 Floating Point

The ARC core does not currently have hardware floating point support. Software floating
point support is provided by GCC and uses ieee floating-point numbers.

Chapter 8: Machine Dependent Features 63

8.1.4 ARC Machine Directives

The ARC version of as supports the following additional machine directives:

.2byte expressions
TODO

.3byte expressions
TODO

.4byte expressions
TODO

.extAuxRegister name,address,mode
TODO

.extAuxRegister mulhi,0x12,w

.extCondCode suffix,value
TODO

.extCondCode is_busy,0x14

.extCoreRegister name,regnum,mode,shortcut
TODO

.extCoreRegister mlo,57,r,can_shortcut

.extInstruction name,opcode,subopcode,suffixclass,syntaxclass
TODO

.extInstruction mul64,0x14,0x0,SUFFIX_COND,SYNTAX_3OP|OP1_MUST_BE_IMM

.half expressions
TODO

.long expressions
TODO

.option arc|arc5|arc6|arc7|arc8
The .option directive must be followed by the desired core version. Again arc
is an alias for arc5.
Note: the .option directive overrides the command line option -marc; a warn-
ing is emitted when the version is not consistent between the two - even for the
implicit default core version (arc5).

.short expressions
TODO

.word expressions
TODO

8.1.5 Opcodes

For information on the ARC instruction set, see ARC Programmers Reference Manual,
ARC Cores Ltd.

64 Using as

8.2 AMD 29K Dependent Features

8.2.1 Options

as has no additional command-line options for the AMD 29K family.

8.2.2 Syntax

8.2.2.1 Macros

The macro syntax used on the AMD 29K is like that described in the AMD 29K Family
Macro Assembler Specification. Normal as macros should still work.

8.2.2.2 Special Characters

‘;’ is the line comment character.

The character ‘?’ is permitted in identifiers (but may not begin an identifier).

8.2.2.3 Register Names

General-purpose registers are represented by predefined symbols of the form ‘GRnnn’ (for
global registers) or ‘LRnnn’ (for local registers), where nnn represents a number between 0
and 127, written with no leading zeros. The leading letters may be in either upper or lower
case; for example, ‘gr13’ and ‘LR7’ are both valid register names.

You may also refer to general-purpose registers by specifying the register number as the
result of an expression (prefixed with ‘%%’ to flag the expression as a register number):

%%expression

—where expression must be an absolute expression evaluating to a number between 0 and
255. The range [0, 127] refers to global registers, and the range [128, 255] to local registers.

In addition, as understands the following protected special-purpose register names for
the AMD 29K family:

vab chd pc0
ops chc pc1
cps rbp pc2
cfg tmc mmu
cha tmr lru

These unprotected special-purpose register names are also recognized:

Chapter 8: Machine Dependent Features 65

ipc alu fpe
ipa bp inte
ipb fc fps
q cr exop

8.2.3 Floating Point

The AMD 29K family uses ieee floating-point numbers.

8.2.4 AMD 29K Machine Directives

.block size , fill
This directive emits size bytes, each of value fill. Both size and fill are absolute
expressions. If the comma and fill are omitted, fill is assumed to be zero.
In other versions of the gnu assembler, this directive is called ‘.space’.

.cputype This directive is ignored; it is accepted for compatibility with other AMD 29K
assemblers.

.file This directive is ignored; it is accepted for compatibility with other AMD 29K
assemblers.

Warning: in other versions of the gnu assembler, .file is used for
the directive called .app-file in the AMD 29K support.

.line This directive is ignored; it is accepted for compatibility with other AMD 29K
assemblers.

.sect This directive is ignored; it is accepted for compatibility with other AMD 29K
assemblers.

.use section name
Establishes the section and subsection for the following code; section name may
be one of .text, .data, .data1, or .lit. With one of the first three section
name options, ‘.use’ is equivalent to the machine directive section name; the
remaining case, ‘.use .lit’, is the same as ‘.data 200’.

8.2.5 Opcodes

as implements all the standard AMD 29K opcodes. No additional pseudo-instructions
are needed on this family.

For information on the 29K machine instruction set, see Am29000 User’s Manual, Ad-
vanced Micro Devices, Inc.

66 Using as

8.3 ARM Dependent Features

8.3.1 Options

-marm[2|250|3|6|60|600|610|620|7|7m|7d|7dm|7di|7dmi|70|700|700i|710|710c|7100|7500|7500fe|7tdmi|8|810|9|9tdmi|920|strongarm|strongarm110|strongarm1100]
-mxscale This option specifies the target processor. The assembler will issue an error

message if an attempt is made to assemble an instruction which will not execute
on the target processor.

-marmv[2|2a|3|3m|4|4t|5|5t|5te]
This option specifies the target architecture. The assembler will issue an error
message if an attempt is made to assemble an instruction which will not execute
on the target architecture. The option -marmv5te specifies that v5t architecture
should be used with the El Segundo extensions enabled.

-mthumb This option specifies that only Thumb instructions should be assembled.

-mall This option specifies that any Arm or Thumb instruction should be assembled.

-mfpa [10|11]
This option specifies the floating point architecture in use on the target proces-
sor.

-mfpe-old
Do not allow the assembly of floating point multiple instructions.

-mno-fpu Do not allow the assembly of any floating point instructions.

-mthumb-interwork
This option specifies that the output generated by the assembler should be
marked as supporting interworking.

-mapcs [26|32]
This option specifies that the output generated by the assembler should be
marked as supporting the indicated version of the Arm Procedure. Calling
Standard.

-matpcs This option specifies that the output generated by the assembler should be
marked as supporting the Arm/Thumb Procedure Calling Standard. If enabled
this option will cause the assembler to create an empty debugging section in
the object file called .arm.atpcs. Debuggers can use this to determine the ABI
being used by.

-mapcs-float
This indicates the the floating point variant of the APCS should be used. In
this variant floating point arguments are passed in FP registers rather than
integer registers.

-mapcs-reentrant
This indicates that the reentrant variant of the APCS should be used. This
variant supports position independent code.

Chapter 8: Machine Dependent Features 67

-EB This option specifies that the output generated by the assembler should be
marked as being encoded for a big-endian processor.

-EL This option specifies that the output generated by the assembler should be
marked as being encoded for a little-endian processor.

-k This option specifies that the output of the assembler should be marked as
position-independent code (PIC).

-moabi This indicates that the code should be assembled using the old ARM ELF
conventions, based on a beta release release of the ARM-ELF specifications,
rather than the default conventions which are based on the final release of the
ARM-ELF specifications.

8.3.2 Syntax

8.3.2.1 Special Characters

The presence of a ‘@’ on a line indicates the start of a comment that extends to the end
of the current line. If a ‘#’ appears as the first character of a line, the whole line is treated
as a comment.

The ‘;’ character can be used instead of a newline to separate statements.

Either ‘#’ or ‘$’ can be used to indicate immediate operands.

TODO Explain about /data modifier on symbols.

8.3.2.2 Register Names

TODO Explain about ARM register naming, and the predefined names.

8.3.3 Floating Point

The ARM family uses ieee floating-point numbers.

8.3.4 ARM Machine Directives

.align expression [, expression]
This is the generic .align directive. For the ARM however if the first argument
is zero (ie no alignment is needed) the assembler will behave as if the argument
had been 2 (ie pad to the next four byte boundary). This is for compatability
with ARM’s own assembler.

68 Using as

name .req register name
This creates an alias for register name called name. For example:

foo .req r0

.code [16|32]
This directive selects the instruction set being generated. The value 16 selects
Thumb, with the value 32 selecting ARM.

.thumb This performs the same action as .code 16.

.arm This performs the same action as .code 32.

.force_thumb
This directive forces the selection of Thumb instructions, even if the target
processor does not support those instructions

.thumb_func
This directive specifies that the following symbol is the name of a Thumb en-
coded function. This information is necessary in order to allow the assembler
and linker to generate correct code for interworking between Arm and Thumb
instructions and should be used even if interworking is not going to be per-
formed. The presence of this directive also implies .thumb

.thumb_set
This performs the equivalent of a .set directive in that it creates a symbol
which is an alias for another symbol (possibly not yet defined). This directive
also has the added property in that it marks the aliased symbol as being a
thumb function entry point, in the same way that the .thumb_func directive
does.

.ltorg This directive causes the current contents of the literal pool to be dumped into
the current section (which is assumed to be the .text section) at the current
location (aligned to a word boundary).

.pool This is a synonym for .ltorg.

8.3.5 Opcodes

as implements all the standard ARM opcodes. It also implements several pseudo op-
codes, including several synthetic load instructions.

NOP

nop

This pseudo op will always evaluate to a legal ARM instruction that does noth-
ing. Currently it will evaluate to MOV r0, r0.

LDR

ldr <register> , = <expression>

If expression evaluates to a numeric constant then a MOV or MVN instruction
will be used in place of the LDR instruction, if the constant can be generated

Chapter 8: Machine Dependent Features 69

by either of these instructions. Otherwise the constant will be placed into the
nearest literal pool (if it not already there) and a PC relative LDR instruction
will be generated.

ADR

adr <register> <label>

This instruction will load the address of label into the indicated register. The
instruction will evaluate to a PC relative ADD or SUB instruction depending
upon where the label is located. If the label is out of range, or if it is not
defined in the same file (and section) as the ADR instruction, then an error will
be generated. This instruction will not make use of the literal pool.

ADRL

adrl <register> <label>

This instruction will load the address of label into the indicated register. The
instruction will evaluate to one or two PC relative ADD or SUB instructions
depending upon where the label is located. If a second instruction is not needed
a NOP instruction will be generated in its place, so that this instruction is
always 8 bytes long.
If the label is out of range, or if it is not defined in the same file (and section)
as the ADRL instruction, then an error will be generated. This instruction will
not make use of the literal pool.

For information on the ARM or Thumb instruction sets, see ARM Software Development
Toolkit Reference Manual, Advanced RISC Machines Ltd.

70 Using as

8.4 D10V Dependent Features

8.4.1 D10V Options

The Mitsubishi D10V version of as has a few machine dependent options.

‘-O’ The D10V can often execute two sub-instructions in parallel. When this option
is used, as will attempt to optimize its output by detecting when instructions
can be executed in parallel.

‘--nowarnswap’
To optimize execution performance, as will sometimes swap the order of in-
structions. Normally this generates a warning. When this option is used, no
warning will be generated when instructions are swapped.

‘--gstabs-packing’
‘--no-gstabs-packing’

as packs adjacent short instructions into a single packed instruction. ‘--no-gstabs-packing’
turns instruction packing off if ‘--gstabs’ is specified as well; ‘--gstabs-packing’
(the default) turns instruction packing on even when ‘--gstabs’ is specified.

8.4.2 Syntax

The D10V syntax is based on the syntax in Mitsubishi’s D10V architecture manual. The
differences are detailed below.

8.4.2.1 Size Modifiers

The D10V version of as uses the instruction names in the D10V Architecture Manual.
However, the names in the manual are sometimes ambiguous. There are instruction names
that can assemble to a short or long form opcode. How does the assembler pick the correct
form? as will always pick the smallest form if it can. When dealing with a symbol that
is not defined yet when a line is being assembled, it will always use the long form. If you
need to force the assembler to use either the short or long form of the instruction, you can
append either ‘.s’ (short) or ‘.l’ (long) to it. For example, if you are writing an assembly
program and you want to do a branch to a symbol that is defined later in your program, you
can write ‘bra.s foo’. Objdump and GDB will always append ‘.s’ or ‘.l’ to instructions
which have both short and long forms.

8.4.2.2 Sub-Instructions

The D10V assembler takes as input a series of instructions, either one-per-line, or in
the special two-per-line format described in the next section. Some of these instructions

Chapter 8: Machine Dependent Features 71

will be short-form or sub-instructions. These sub-instructions can be packed into a single
instruction. The assembler will do this automatically. It will also detect when it should not
pack instructions. For example, when a label is defined, the next instruction will never be
packaged with the previous one. Whenever a branch and link instruction is called, it will
not be packaged with the next instruction so the return address will be valid. Nops are
automatically inserted when necessary.

If you do not want the assembler automatically making these decisions, you can control
the packaging and execution type (parallel or sequential) with the special execution symbols
described in the next section.

8.4.2.3 Special Characters

‘;’ and ‘#’ are the line comment characters. Sub-instructions may be executed in order,
in reverse-order, or in parallel. Instructions listed in the standard one-per-line format will
be executed sequentially. To specify the executing order, use the following symbols:

‘->’ Sequential with instruction on the left first.

‘<-’ Sequential with instruction on the right first.

‘||’ Parallel

The D10V syntax allows either one instruction per line, one instruction per line with the
execution symbol, or two instructions per line. For example

abs a1 -> abs r0
Execute these sequentially. The instruction on the right is in the right container
and is executed second.

abs r0 <- abs a1
Execute these reverse-sequentially. The instruction on the right is in the right
container, and is executed first.

ld2w r2,@r8+ || mac a0,r0,r7
Execute these in parallel.

ld2w r2,@r8+ ||
mac a0,r0,r7

Two-line format. Execute these in parallel.

ld2w r2,@r8+
mac a0,r0,r7

Two-line format. Execute these sequentially. Assembler will put them in the
proper containers.

ld2w r2,@r8+ ->
mac a0,r0,r7

Two-line format. Execute these sequentially. Same as above but second in-
struction will always go into right container.

Since ‘$’ has no special meaning, you may use it in symbol names.

72 Using as

8.4.2.4 Register Names

You can use the predefined symbols ‘r0’ through ‘r15’ to refer to the D10V registers. You
can also use ‘sp’ as an alias for ‘r15’. The accumulators are ‘a0’ and ‘a1’. There are special
register-pair names that may optionally be used in opcodes that require even-numbered
registers. Register names are not case sensitive.

Register Pairs

r0-r1

r2-r3

r4-r5

r6-r7

r8-r9

r10-r11

r12-r13

r14-r15

The D10V also has predefined symbols for these control registers and status bits:

psw Processor Status Word

bpsw Backup Processor Status Word

pc Program Counter

bpc Backup Program Counter

rpt_c Repeat Count

rpt_s Repeat Start address

rpt_e Repeat End address

mod_s Modulo Start address

mod_e Modulo End address

iba Instruction Break Address

f0 Flag 0

f1 Flag 1

c Carry flag

8.4.2.5 Addressing Modes

as understands the following addressing modes for the D10V. Rn in the following refers
to any of the numbered registers, but not the control registers.

Chapter 8: Machine Dependent Features 73

Rn Register direct

@Rn Register indirect

@Rn+ Register indirect with post-increment

@Rn- Register indirect with post-decrement

@-SP Register indirect with pre-decrement

@(disp, Rn)
Register indirect with displacement

addr PC relative address (for branch or rep).

#imm Immediate data (the ‘#’ is optional and ignored)

8.4.2.6 @WORD Modifier

Any symbol followed by @word will be replaced by the symbol’s value shifted right by 2.
This is used in situations such as loading a register with the address of a function (or any
other code fragment). For example, if you want to load a register with the location of the
function main then jump to that function, you could do it as follws:

ldi r2, main@word
jmp r2

8.4.3 Floating Point

The D10V has no hardware floating point, but the .float and .double directives gen-
erates ieee floating-point numbers for compatibility with other development tools.

8.4.4 Opcodes

For detailed information on the D10V machine instruction set, see D10V Architecture: A
VLIW Microprocessor for Multimedia Applications (Mitsubishi Electric Corp.). as imple-
ments all the standard D10V opcodes. The only changes are those described in the section
on size modifiers

74 Using as

8.5 D30V Dependent Features

8.5.1 D30V Options

The Mitsubishi D30V version of as has a few machine dependent options.

‘-O’ The D30V can often execute two sub-instructions in parallel. When this option
is used, as will attempt to optimize its output by detecting when instructions
can be executed in parallel.

‘-n’ When this option is used, as will issue a warning every time it adds a nop
instruction.

‘-N’ When this option is used, as will issue a warning if it needs to insert a nop
after a 32-bit multiply before a load or 16-bit multiply instruction.

8.5.2 Syntax

The D30V syntax is based on the syntax in Mitsubishi’s D30V architecture manual. The
differences are detailed below.

8.5.2.1 Size Modifiers

The D30V version of as uses the instruction names in the D30V Architecture Manual.
However, the names in the manual are sometimes ambiguous. There are instruction names
that can assemble to a short or long form opcode. How does the assembler pick the correct
form? as will always pick the smallest form if it can. When dealing with a symbol that
is not defined yet when a line is being assembled, it will always use the long form. If you
need to force the assembler to use either the short or long form of the instruction, you can
append either ‘.s’ (short) or ‘.l’ (long) to it. For example, if you are writing an assembly
program and you want to do a branch to a symbol that is defined later in your program, you
can write ‘bra.s foo’. Objdump and GDB will always append ‘.s’ or ‘.l’ to instructions
which have both short and long forms.

8.5.2.2 Sub-Instructions

The D30V assembler takes as input a series of instructions, either one-per-line, or in
the special two-per-line format described in the next section. Some of these instructions
will be short-form or sub-instructions. These sub-instructions can be packed into a single
instruction. The assembler will do this automatically. It will also detect when it should not
pack instructions. For example, when a label is defined, the next instruction will never be
packaged with the previous one. Whenever a branch and link instruction is called, it will

Chapter 8: Machine Dependent Features 75

not be packaged with the next instruction so the return address will be valid. Nops are
automatically inserted when necessary.

If you do not want the assembler automatically making these decisions, you can control
the packaging and execution type (parallel or sequential) with the special execution symbols
described in the next section.

8.5.2.3 Special Characters

‘;’ and ‘#’ are the line comment characters. Sub-instructions may be executed in order,
in reverse-order, or in parallel. Instructions listed in the standard one-per-line format will
be executed sequentially unless you use the ‘-O’ option.

To specify the executing order, use the following symbols:

‘->’ Sequential with instruction on the left first.

‘<-’ Sequential with instruction on the right first.

‘||’ Parallel

The D30V syntax allows either one instruction per line, one instruction per line with the
execution symbol, or two instructions per line. For example

abs r2,r3 -> abs r4,r5
Execute these sequentially. The instruction on the right is in the right container
and is executed second.

abs r2,r3 <- abs r4,r5
Execute these reverse-sequentially. The instruction on the right is in the right
container, and is executed first.

abs r2,r3 || abs r4,r5
Execute these in parallel.

ldw r2,@(r3,r4) ||
mulx r6,r8,r9

Two-line format. Execute these in parallel.

mulx a0,r8,r9
stw r2,@(r3,r4)

Two-line format. Execute these sequentially unless ‘-O’ option is used. If the
‘-O’ option is used, the assembler will determine if the instructions could be
done in parallel (the above two instructions can be done in parallel), and if so,
emit them as parallel instructions. The assembler will put them in the proper
containers. In the above example, the assembler will put the ‘stw’ instruction
in left container and the ‘mulx’ instruction in the right container.

stw r2,@(r3,r4) ->
mulx a0,r8,r9

Two-line format. Execute the ‘stw’ instruction followed by the ‘mulx’ instruc-
tion sequentially. The first instruction goes in the left container and the second
instruction goes into right container. The assembler will give an error if the
machine ordering constraints are violated.

76 Using as

stw r2,@(r3,r4) <-
mulx a0,r8,r9

Same as previous example, except that the ‘mulx’ instruction is executed before
the ‘stw’ instruction.

Since ‘$’ has no special meaning, you may use it in symbol names.

8.5.2.4 Guarded Execution

as supports the full range of guarded execution directives for each instruction. Just
append the directive after the instruction proper. The directives are:

‘/tx’ Execute the instruction if flag f0 is true.

‘/fx’ Execute the instruction if flag f0 is false.

‘/xt’ Execute the instruction if flag f1 is true.

‘/xf’ Execute the instruction if flag f1 is false.

‘/tt’ Execute the instruction if both flags f0 and f1 are true.

‘/tf’ Execute the instruction if flag f0 is true and flag f1 is false.

8.5.2.5 Register Names

You can use the predefined symbols ‘r0’ through ‘r63’ to refer to the D30V registers.
You can also use ‘sp’ as an alias for ‘r63’ and ‘link’ as an alias for ‘r62’. The accumulators
are ‘a0’ and ‘a1’.

The D30V also has predefined symbols for these control registers and status bits:

psw Processor Status Word

bpsw Backup Processor Status Word

pc Program Counter

bpc Backup Program Counter

rpt_c Repeat Count

rpt_s Repeat Start address

rpt_e Repeat End address

mod_s Modulo Start address

mod_e Modulo End address

iba Instruction Break Address

f0 Flag 0

f1 Flag 1

f2 Flag 2

Chapter 8: Machine Dependent Features 77

f3 Flag 3

f4 Flag 4

f5 Flag 5

f6 Flag 6

f7 Flag 7

s Same as flag 4 (saturation flag)

v Same as flag 5 (overflow flag)

va Same as flag 6 (sticky overflow flag)

c Same as flag 7 (carry/borrow flag)

b Same as flag 7 (carry/borrow flag)

8.5.2.6 Addressing Modes

as understands the following addressing modes for the D30V. Rn in the following refers
to any of the numbered registers, but not the control registers.

Rn Register direct

@Rn Register indirect

@Rn+ Register indirect with post-increment

@Rn- Register indirect with post-decrement

@-SP Register indirect with pre-decrement

@(disp, Rn)
Register indirect with displacement

addr PC relative address (for branch or rep).

#imm Immediate data (the ‘#’ is optional and ignored)

8.5.3 Floating Point

The D30V has no hardware floating point, but the .float and .double directives gen-
erates ieee floating-point numbers for compatibility with other development tools.

8.5.4 Opcodes

For detailed information on the D30V machine instruction set, see D30V Architecture: A
VLIW Microprocessor for Multimedia Applications (Mitsubishi Electric Corp.). as imple-
ments all the standard D30V opcodes. The only changes are those described in the section
on size modifiers

78 Using as

8.6 H8/300 Dependent Features

8.6.1 Options

as has no additional command-line options for the Hitachi H8/300 family.

8.6.2 Syntax

8.6.2.1 Special Characters

‘;’ is the line comment character.
‘$’ can be used instead of a newline to separate statements. Therefore you may not use

‘$’ in symbol names on the H8/300.

8.6.2.2 Register Names

You can use predefined symbols of the form ‘rnh’ and ‘rnl’ to refer to the H8/300
registers as sixteen 8-bit general-purpose registers. n is a digit from ‘0’ to ‘7’); for instance,
both ‘r0h’ and ‘r7l’ are valid register names.

You can also use the eight predefined symbols ‘rn’ to refer to the H8/300 registers as
16-bit registers (you must use this form for addressing).

On the H8/300H, you can also use the eight predefined symbols ‘ern’ (‘er0’ . . . ‘er7’)
to refer to the 32-bit general purpose registers.

The two control registers are called pc (program counter; a 16-bit register, except on
the H8/300H where it is 24 bits) and ccr (condition code register; an 8-bit register). r7 is
used as the stack pointer, and can also be called sp.

8.6.2.3 Addressing Modes

as understands the following addressing modes for the H8/300:

rn Register direct

@rn Register indirect

@(d, rn)
@(d:16, rn)
@(d:24, rn)

Register indirect: 16-bit or 24-bit displacement d from register n. (24-bit dis-
placements are only meaningful on the H8/300H.)

Chapter 8: Machine Dependent Features 79

@rn+ Register indirect with post-increment

@-rn Register indirect with pre-decrement

@aa
@aa:8
@aa:16
@aa:24 Absolute address aa. (The address size ‘:24’ only makes sense on the H8/300H.)

#xx
#xx:8
#xx:16
#xx:32 Immediate data xx. You may specify the ‘:8’, ‘:16’, or ‘:32’ for clarity, if you

wish; but as neither requires this nor uses it—the data size required is taken
from context.

@@aa
@@aa:8 Memory indirect. You may specify the ‘:8’ for clarity, if you wish; but as

neither requires this nor uses it.

8.6.3 Floating Point

The H8/300 family has no hardware floating point, but the .float directive generates
ieee floating-point numbers for compatibility with other development tools.

80 Using as

8.6.4 H8/300 Machine Directives

as has only one machine-dependent directive for the H8/300:

.h8300h Recognize and emit additional instructions for the H8/300H variant, and also
make .int emit 32-bit numbers rather than the usual (16-bit) for the H8/300
family.

On the H8/300 family (including the H8/300H) ‘.word’ directives generate 16-bit num-
bers.

8.6.5 Opcodes

For detailed information on the H8/300 machine instruction set, see H8/300 Series Pro-
gramming Manual (Hitachi ADE–602–025). For information specific to the H8/300H, see
H8/300H Series Programming Manual (Hitachi).

as implements all the standard H8/300 opcodes. No additional pseudo-instructions are
needed on this family.

Four H8/300 instructions (add, cmp, mov, sub) are defined with variants using the suffixes
‘.b’, ‘.w’, and ‘.l’ to specify the size of a memory operand. as supports these suffixes, but
does not require them; since one of the operands is always a register, as can deduce the
correct size.

For example, since r0 refers to a 16-bit register,
mov r0,@foo

is equivalent to
mov.w r0,@foo

If you use the size suffixes, as issues a warning when the suffix and the register size do
not match.

Chapter 8: Machine Dependent Features 81

8.7 H8/500 Dependent Features

8.7.1 Options

as has no additional command-line options for the Hitachi H8/500 family.

8.7.2 Syntax

8.7.2.1 Special Characters

‘!’ is the line comment character.
‘;’ can be used instead of a newline to separate statements.
Since ‘$’ has no special meaning, you may use it in symbol names.

8.7.2.2 Register Names

You can use the predefined symbols ‘r0’, ‘r1’, ‘r2’, ‘r3’, ‘r4’, ‘r5’, ‘r6’, and ‘r7’ to refer
to the H8/500 registers.

The H8/500 also has these control registers:

cp code pointer

dp data pointer

bp base pointer

tp stack top pointer

ep extra pointer

sr status register

ccr condition code register

All registers are 16 bits long. To represent 32 bit numbers, use two adjacent registers;
for distant memory addresses, use one of the segment pointers (cp for the program counter;
dp for r0–r3; ep for r4 and r5; and tp for r6 and r7.

8.7.2.3 Addressing Modes

as understands the following addressing modes for the H8/500:

Rn Register direct

82 Using as

@Rn Register indirect

@(d:8, Rn)
Register indirect with 8 bit signed displacement

@(d:16, Rn)
Register indirect with 16 bit signed displacement

@-Rn Register indirect with pre-decrement

@Rn+ Register indirect with post-increment

@aa:8 8 bit absolute address

@aa:16 16 bit absolute address

#xx:8 8 bit immediate

#xx:16 16 bit immediate

8.7.3 Floating Point

The H8/500 family has no hardware floating point, but the .float directive generates
ieee floating-point numbers for compatibility with other development tools.

8.7.4 H8/500 Machine Directives

as has no machine-dependent directives for the H8/500. However, on this platform the
‘.int’ and ‘.word’ directives generate 16-bit numbers.

8.7.5 Opcodes

For detailed information on the H8/500 machine instruction set, see H8/500 Series Pro-
gramming Manual (Hitachi M21T001).

as implements all the standard H8/500 opcodes. No additional pseudo-instructions are
needed on this family.

Chapter 8: Machine Dependent Features 83

8.8 HPPA Dependent Features

8.8.1 Notes

As a back end for gnu cc as has been throughly tested and should work extremely well.
We have tested it only minimally on hand written assembly code and no one has tested it
much on the assembly output from the HP compilers.

The format of the debugging sections has changed since the original as port (version
1.3X) was released; therefore, you must rebuild all HPPA objects and libraries with the new
assembler so that you can debug the final executable.

The HPPA as port generates a small subset of the relocations available in the SOM
and ELF object file formats. Additional relocation support will be added as it becomes
necessary.

8.8.2 Options

as has no machine-dependent command-line options for the HPPA.

8.8.3 Syntax

The assembler syntax closely follows the HPPA instruction set reference manual; as-
sembler directives and general syntax closely follow the HPPA assembly language reference
manual, with a few noteworthy differences.

First, a colon may immediately follow a label definition. This is simply for compatibility
with how most assembly language programmers write code.

Some obscure expression parsing problems may affect hand written code which uses the
spop instructions, or code which makes significant use of the ! line separator.

as is much less forgiving about missing arguments and other similar oversights than the
HP assembler. as notifies you of missing arguments as syntax errors; this is regarded as a
feature, not a bug.

Finally, as allows you to use an external symbol without explicitly importing the symbol.
Warning: in the future this will be an error for HPPA targets.

Special characters for HPPA targets include:
‘;’ is the line comment character.
‘!’ can be used instead of a newline to separate statements.
Since ‘$’ has no special meaning, you may use it in symbol names.

8.8.4 Floating Point

The HPPA family uses ieee floating-point numbers.

84 Using as

8.8.5 HPPA Assembler Directives

as for the HPPA supports many additional directives for compatibility with the native
assembler. This section describes them only briefly. For detailed information on HPPA-
specific assembler directives, see HP9000 Series 800 Assembly Language Reference Manual
(HP 92432-90001).

as does not support the following assembler directives described in the HP manual:

.endm .liston

.enter .locct

.leave .macro

.listoff

Beyond those implemented for compatibility, as supports one additional assembler di-
rective for the HPPA: .param. It conveys register argument locations for static functions.
Its syntax closely follows the .export directive.

These are the additional directives in as for the HPPA:

.block n

.blockz n Reserve n bytes of storage, and initialize them to zero.

.call Mark the beginning of a procedure call. Only the special case with no arguments
is allowed.

.callinfo [param=value, ...] [flag, ...]
Specify a number of parameters and flags that define the environment for a
procedure.

param may be any of ‘frame’ (frame size), ‘entry_gr’ (end of general regis-
ter range), ‘entry_fr’ (end of float register range), ‘entry_sr’ (end of space
register range).

The values for flag are ‘calls’ or ‘caller’ (proc has subroutines), ‘no_calls’
(proc does not call subroutines), ‘save_rp’ (preserve return pointer), ‘save_sp’
(proc preserves stack pointer), ‘no_unwind’ (do not unwind this proc), ‘hpux_int’
(proc is interrupt routine).

.code Assemble into the standard section called ‘$TEXT$’, subsection ‘$CODE$’.

.copyright "string"
In the SOM object format, insert string into the object code, marked as a
copyright string.

.copyright "string"
In the ELF object format, insert string into the object code, marked as a version
string.

.enter Not yet supported; the assembler rejects programs containing this directive.

.entry Mark the beginning of a procedure.

.exit Mark the end of a procedure.

Chapter 8: Machine Dependent Features 85

.export name [,typ] [,param=r]
Make a procedure name available to callers. typ, if present, must be one
of ‘absolute’, ‘code’ (ELF only, not SOM), ‘data’, ‘entry’, ‘data’, ‘entry’,
‘millicode’, ‘plabel’, ‘pri_prog’, or ‘sec_prog’.
param, if present, provides either relocation information for the procedure ar-
guments and result, or a privilege level. param may be ‘argwn’ (where n ranges
from 0 to 3, and indicates one of four one-word arguments); ‘rtnval’ (the pro-
cedure’s result); or ‘priv_lev’ (privilege level). For arguments or the result, r
specifies how to relocate, and must be one of ‘no’ (not relocatable), ‘gr’ (argu-
ment is in general register), ‘fr’ (in floating point register), or ‘fu’ (upper half
of float register). For ‘priv_lev’, r is an integer.

.half n Define a two-byte integer constant n; synonym for the portable as directive
.short.

.import name [,typ]
Converse of .export; make a procedure available to call. The arguments use
the same conventions as the first two arguments for .export.

.label name
Define name as a label for the current assembly location.

.leave Not yet supported; the assembler rejects programs containing this directive.

.origin lc
Advance location counter to lc. Synonym for the [No value for ‘‘as’’]
portable directive .org.

.param name [,typ] [,param=r]
Similar to .export, but used for static procedures.

.proc Use preceding the first statement of a procedure.

.procend Use following the last statement of a procedure.

label .reg expr
Synonym for .equ; define label with the absolute expression expr as its value.

.space secname [,params]
Switch to section secname, creating a new section by that name if necessary.
You may only use params when creating a new section, not when switching
to an existing one. secname may identify a section by number rather than by
name.
If specified, the list params declares attributes of the section, identified by key-
words. The keywords recognized are ‘spnum=exp’ (identify this section by the
number exp, an absolute expression), ‘sort=exp’ (order sections according to
this sort key when linking; exp is an absolute expression), ‘unloadable’ (sec-
tion contains no loadable data), ‘notdefined’ (this section defined elsewhere),
and ‘private’ (data in this section not available to other programs).

.spnum secnam
Allocate four bytes of storage, and initialize them with the section number of
the section named secnam. (You can define the section number with the HPPA
.space directive.)

86 Using as

.string "str"
Copy the characters in the string str to the object file. See Section 3.6.1.1
[Strings], page 20, for information on escape sequences you can use in as strings.
Warning! The HPPA version of .string differs from the usual as definition:
it does not write a zero byte after copying str.

.stringz "str"
Like .string, but appends a zero byte after copying str to object file.

.subspa name [,params]

.nsubspa name [,params]
Similar to .space, but selects a subsection name within the current section.
You may only specify params when you create a subsection (in the first instance
of .subspa for this name).
If specified, the list params declares attributes of the subsection, identified
by keywords. The keywords recognized are ‘quad=expr’ (“quadrant” for this
subsection), ‘align=expr’ (alignment for beginning of this subsection; a power
of two), ‘access=expr’ (value for “access rights” field), ‘sort=expr’ (sorting
order for this subspace in link), ‘code_only’ (subsection contains only code),
‘unloadable’ (subsection cannot be loaded into memory), ‘common’ (subsection
is common block), ‘dup_comm’ (initialized data may have duplicate names), or
‘zero’ (subsection is all zeros, do not write in object file).
.nsubspa always creates a new subspace with the given name, even if one with
the same name already exists.

.version "str"
Write str as version identifier in object code.

8.8.6 Opcodes

For detailed information on the HPPA machine instruction set, see PA-RISC Architec-
ture and Instruction Set Reference Manual (HP 09740-90039).

Chapter 8: Machine Dependent Features 87

8.9 ESA/390 Dependent Features

8.9.1 Notes

The ESA/390 as port is currently intended to be a back-end for the gnu cc compiler. It
is not HLASM compatible, although it does support a subset of some of the HLASM direc-
tives. The only supported binary file format is ELF; none of the usual MVS/VM/OE/USS
object file formats, such as ESD or XSD, are supported.

When used with the gnu cc compiler, the ESA/390 as will produce correct, fully relo-
cated, functional binaries, and has been used to compile and execute large projects. How-
ever, many aspects should still be considered experimental; these include shared library
support, dynamically loadable objects, and any relocation other than the 31-bit relocation.

8.9.2 Options

as has no machine-dependent command-line options for the ESA/390.

8.9.3 Syntax

The opcode/operand syntax follows the ESA/390 Principles of Operation manual; assem-
bler directives and general syntax are loosely based on the prevailing AT&T/SVR4/ELF/Solaris
style notation. HLASM-style directives are not supported for the most part, with the ex-
ception of those described herein.

A leading dot in front of directives is optional, and the case of directives is ignored; thus
for example, .using and USING have the same effect.

A colon may immediately follow a label definition. This is simply for compatibility with
how most assembly language programmers write code.

‘#’ is the line comment character.
‘;’ can be used instead of a newline to separate statements.
Since ‘$’ has no special meaning, you may use it in symbol names.
Registers can be given the symbolic names r0..r15, fp0, fp2, fp4, fp6. By using thesse

symbolic names, as can detect simple syntax errors. The name rarg or r.arg is a synonym
for r11, rtca or r.tca for r12, sp, r.sp, dsa r.dsa for r13, lr or r.lr for r14, rbase or r.base for
r3 and rpgt or r.pgt for r4.

‘*’ is the current location counter. Unlike ‘.’ it is always relative to the last USING
directive. Note that this means that expressions cannot use multiplication, as any occurence
of ‘*’ will be interpreted as a location counter.

All labels are relative to the last USING. Thus, branches to a label always imply the use
of base+displacement.

Many of the usual forms of address constants / address literals are supported. Thus,

88 Using as

.using *,r3
L r15,=A(some_routine)
LM r6,r7,=V(some_longlong_extern)
A r1,=F’12’
AH r0,=H’42’
ME r6,=E’3.1416’
MD r6,=D’3.14159265358979’
O r6,=XL4’cacad0d0’
.ltorg

should all behave as expected: that is, an entry in the literal pool will be created (or
reused if it already exists), and the instruction operands will be the displacement into the
literal pool using the current base register (as last declared with the .using directive).

8.9.4 Floating Point

The assembler generates only ieee floating-point numbers. The older floiating point
formats are not supported.

8.9.5 ESA/390 Assembler Directives

as for the ESA/390 supports all of the standard ELF/SVR4 assembler directives that
are documented in the main part of this documentation. Several additional directives are
supported in order to implement the ESA/390 addressing model. The most important of
these are .using and .ltorg

These are the additional directives in as for the ESA/390:

.dc A small subset of the usual DC directive is supported.

.drop regno
Stop using regno as the base register. The regno must have been previously
declared with a .using directive in the same section as the current section.

.ebcdic string
Emit the EBCDIC equivalent of the indicated string. The emitted string will
be null terminated. Note that the directives .string etc. emit ascii strings by
default.

EQU The standard HLASM-style EQU directive is not supported; however, the stan-
dard as directive .equ can be used to the same effect.

.ltorg Dump the literal pool accumulated so far; begin a new literal pool. The literal
pool will be written in the current section; in order to generate correct assembly,
a .using must have been previously specified in the same section.

.using expr,regno
Use regno as the base register for all subsequent RX, RS, and SS form instruc-
tions. The expr will be evaluated to obtain the base address; usually, expr will
merely be ‘*’.

Chapter 8: Machine Dependent Features 89

This assembler allows two .using directives to be simultaneously outstanding,
one in the .text section, and one in another section (typically, the .data
section). This feature allows dynamically loaded objects to be implemented in
a relatively straightforward way. A .using directive must always be specified
in the .text section; this will specify the base register that will be used for
branches in the .text section. A second .using may be specified in another
section; this will specify the base register that is used for non-label address
literals. When a second .using is specified, then the subsequent .ltorg must
be put in the same section; otherwise an error will result.
Thus, for example, the following code uses r3 to address branch targets and r4
to address the literal pool, which has been written to the .data section. The
is, the constants =A(some_routine), =H’42’ and =E’3.1416’ will all appear
in the .data section.

.data

.using LITPOOL,r4

.text
BASR r3,0
.using *,r3

B START
.long LITPOOL
START:
L r4,4(,r3)
L r15,=A(some_routine)
LTR r15,r15
BNE LABEL
AH r0,=H’42’
LABEL:
ME r6,=E’3.1416’
.data
LITPOOL:
.ltorg

Note that this dual-.using directive semantics extends and is not compatible
with HLASM semantics. Note that this assembler directive does not support
the full range of HLASM semantics.

8.9.6 Opcodes

For detailed information on the ESA/390 machine instruction set, see ESA/390 Princi-
ples of Operation (IBM Publication Number DZ9AR004).

90 Using as

8.10 80386 Dependent Features

The i386 version as supports both the original Intel 386 architecture in both 16 and
32-bit mode as well as AMD x86-64 architecture extending the Intel architecture to 64-bits.

8.10.1 Options

The i386 version of as has a few machine dependent options:

--32 | --64
Select the word size, either 32 bits or 64 bits. Selecting 32-bit implies Intel i386
architecture, while 64-bit implies AMD x86-64 architecture.
These options are only available with the ELF object file format, and require
that the necessary BFD support has been included (on a 32-bit platform you
have to add –enable-64-bit-bfd to configure enable 64-bit usage and use x86-64
as target platform).

8.10.2 AT&T Syntax versus Intel Syntax

as now supports assembly using Intel assembler syntax. .intel_syntax selects Intel
mode, and .att_syntax switches back to the usual AT&T mode for compatibility with
the output of gcc. Either of these directives may have an optional argument, prefix, or
noprefix specifying whether registers require a ‘%’ prefix. AT&T System V/386 assembler
syntax is quite different from Intel syntax. We mention these differences because almost all
80386 documents use Intel syntax. Notable differences between the two syntaxes are:
• AT&T immediate operands are preceded by ‘$’; Intel immediate operands are undelim-

ited (Intel ‘push 4’ is AT&T ‘pushl $4’). AT&T register operands are preceded by ‘%’;
Intel register operands are undelimited. AT&T absolute (as opposed to PC relative)
jump/call operands are prefixed by ‘*’; they are undelimited in Intel syntax.

• AT&T and Intel syntax use the opposite order for source and destination operands.
Intel ‘add eax, 4’ is ‘addl $4, %eax’. The ‘source, dest’ convention is maintained
for compatibility with previous Unix assemblers. Note that instructions with more
than one source operand, such as the ‘enter’ instruction, do not have reversed order.
Section 8.10.11 [i386-Bugs], page 96.

• In AT&T syntax the size of memory operands is determined from the last character of
the instruction mnemonic. Mnemonic suffixes of ‘b’, ‘w’, ‘l’ and ‘q’ specify byte (8-bit),
word (16-bit), long (32-bit) and quadruple word (64-bit) memory references. Intel syn-
tax accomplishes this by prefixing memory operands (not the instruction mnemonics)
with ‘byte ptr’, ‘word ptr’, ‘dword ptr’ and ‘qword ptr’. Thus, Intel ‘mov al, byte
ptr foo’ is ‘movb foo, %al’ in AT&T syntax.

• Immediate form long jumps and calls are ‘lcall/ljmp $section, $offset’ in AT&T syn-
tax; the Intel syntax is ‘call/jmp far section:offset’. Also, the far return instruction
is ‘lret $stack-adjust’ in AT&T syntax; Intel syntax is ‘ret far stack-adjust’.

Chapter 8: Machine Dependent Features 91

• The AT&T assembler does not provide support for multiple section programs. Unix
style systems expect all programs to be single sections.

8.10.3 Instruction Naming

Instruction mnemonics are suffixed with one character modifiers which specify the size
of operands. The letters ‘b’, ‘w’, ‘l’ and ‘q’ specify byte, word, long and quadruple word
operands. If no suffix is specified by an instruction then as tries to fill in the missing
suffix based on the destination register operand (the last one by convention). Thus, ‘mov
%ax, %bx’ is equivalent to ‘movw %ax, %bx’; also, ‘mov $1, %bx’ is equivalent to ‘movw $1,
bx’. Note that this is incompatible with the AT&T Unix assembler which assumes that a
missing mnemonic suffix implies long operand size. (This incompatibility does not affect
compiler output since compilers always explicitly specify the mnemonic suffix.)

Almost all instructions have the same names in AT&T and Intel format. There are a few
exceptions. The sign extend and zero extend instructions need two sizes to specify them.
They need a size to sign/zero extend from and a size to zero extend to. This is accomplished
by using two instruction mnemonic suffixes in AT&T syntax. Base names for sign extend
and zero extend are ‘movs...’ and ‘movz...’ in AT&T syntax (‘movsx’ and ‘movzx’ in Intel
syntax). The instruction mnemonic suffixes are tacked on to this base name, the from suffix
before the to suffix. Thus, ‘movsbl %al, %edx’ is AT&T syntax for “move sign extend from
%al to %edx.” Possible suffixes, thus, are ‘bl’ (from byte to long), ‘bw’ (from byte to word),
‘wl’ (from word to long), ‘bq’ (from byte to quadruple word), ‘wq’ (from word to quadruple
word), and ‘lq’ (from long to quadruple word).

The Intel-syntax conversion instructions

• ‘cbw’ — sign-extend byte in ‘%al’ to word in ‘%ax’,
• ‘cwde’ — sign-extend word in ‘%ax’ to long in ‘%eax’,
• ‘cwd’ — sign-extend word in ‘%ax’ to long in ‘%dx:%ax’,
• ‘cdq’ — sign-extend dword in ‘%eax’ to quad in ‘%edx:%eax’,
• ‘cdqe’ — sign-extend dword in ‘%eax’ to quad in ‘%rax’ (x86-64 only),
• ‘cdo’ — sign-extend quad in ‘%rax’ to octuple in ‘%rdx:%rax’ (x86-64 only),

are called ‘cbtw’, ‘cwtl’, ‘cwtd’, ‘cltd’, ‘cltq’, and ‘cqto’ in AT&T naming. as accepts
either naming for these instructions.

Far call/jump instructions are ‘lcall’ and ‘ljmp’ in AT&T syntax, but are ‘call far’
and ‘jump far’ in Intel convention.

8.10.4 Register Naming

Register operands are always prefixed with ‘%’. The 80386 registers consist of

• the 8 32-bit registers ‘%eax’ (the accumulator), ‘%ebx’, ‘%ecx’, ‘%edx’, ‘%edi’, ‘%esi’,
‘%ebp’ (the frame pointer), and ‘%esp’ (the stack pointer).

• the 8 16-bit low-ends of these: ‘%ax’, ‘%bx’, ‘%cx’, ‘%dx’, ‘%di’, ‘%si’, ‘%bp’, and ‘%sp’.

92 Using as

• the 8 8-bit registers: ‘%ah’, ‘%al’, ‘%bh’, ‘%bl’, ‘%ch’, ‘%cl’, ‘%dh’, and ‘%dl’ (These are
the high-bytes and low-bytes of ‘%ax’, ‘%bx’, ‘%cx’, and ‘%dx’)

• the 6 section registers ‘%cs’ (code section), ‘%ds’ (data section), ‘%ss’ (stack section),
‘%es’, ‘%fs’, and ‘%gs’.

• the 3 processor control registers ‘%cr0’, ‘%cr2’, and ‘%cr3’.
• the 6 debug registers ‘%db0’, ‘%db1’, ‘%db2’, ‘%db3’, ‘%db6’, and ‘%db7’.
• the 2 test registers ‘%tr6’ and ‘%tr7’.
• the 8 floating point register stack ‘%st’ or equivalently ‘%st(0)’, ‘%st(1)’, ‘%st(2)’,

‘%st(3)’, ‘%st(4)’, ‘%st(5)’, ‘%st(6)’, and ‘%st(7)’. These registers are overloaded
by 8 MMX registers ‘%mm0’, ‘%mm1’, ‘%mm2’, ‘%mm3’, ‘%mm4’, ‘%mm5’, ‘%mm6’ and ‘%mm7’.

• the 8 SSE registers registers ‘%xmm0’, ‘%xmm1’, ‘%xmm2’, ‘%xmm3’, ‘%xmm4’, ‘%xmm5’, ‘%xmm6’
and ‘%xmm7’.

The AMD x86-64 architecture extends the register set by:
• enhancing the 8 32-bit registers to 64-bit: ‘%rax’ (the accumulator), ‘%rbx’, ‘%rcx’,

‘%rdx’, ‘%rdi’, ‘%rsi’, ‘%rbp’ (the frame pointer), ‘%rsp’ (the stack pointer)
• the 8 extended registers ‘%r8’–‘%r15’.
• the 8 32-bit low ends of the extended registers: ‘%r8d’–‘%r15d’
• the 8 16-bit low ends of the extended registers: ‘%r8w’–‘%r15w’
• the 8 8-bit low ends of the extended registers: ‘%r8b’–‘%r15b’
• the 4 8-bit registers: ‘%sil’, ‘%dil’, ‘%bpl’, ‘%spl’.
• the 8 debug registers: ‘%db8’–‘%db15’.
• the 8 SSE registers: ‘%xmm8’–‘%xmm15’.

8.10.5 Instruction Prefixes

Instruction prefixes are used to modify the following instruction. They are used to
repeat string instructions, to provide section overrides, to perform bus lock operations,
and to change operand and address sizes. (Most instructions that normally operate on
32-bit operands will use 16-bit operands if the instruction has an “operand size” prefix.)
Instruction prefixes are best written on the same line as the instruction they act upon. For
example, the ‘scas’ (scan string) instruction is repeated with:

repne scas %es:(%edi),%al

You may also place prefixes on the lines immediately preceding the instruction, but this
circumvents checks that as does with prefixes, and will not work with all prefixes.

Here is a list of instruction prefixes:
• Section override prefixes ‘cs’, ‘ds’, ‘ss’, ‘es’, ‘fs’, ‘gs’. These are automatically added

by specifying using the section:memory-operand form for memory references.
• Operand/Address size prefixes ‘data16’ and ‘addr16’ change 32-bit operands/addresses

into 16-bit operands/addresses, while ‘data32’ and ‘addr32’ change 16-bit ones (in a
.code16 section) into 32-bit operands/addresses. These prefixes must appear on the
same line of code as the instruction they modify. For example, in a 16-bit .code16
section, you might write:

Chapter 8: Machine Dependent Features 93

addr32 jmpl *(%ebx)

• The bus lock prefix ‘lock’ inhibits interrupts during execution of the instruction it
precedes. (This is only valid with certain instructions; see a 80386 manual for details).

• The wait for coprocessor prefix ‘wait’ waits for the coprocessor to complete the current
instruction. This should never be needed for the 80386/80387 combination.

• The ‘rep’, ‘repe’, and ‘repne’ prefixes are added to string instructions to make them
repeat ‘%ecx’ times (‘%cx’ times if the current address size is 16-bits).

• The ‘rex’ family of prefixes is used by x86-64 to encode extensions to i386 instruction
set. The ‘rex’ prefix has four bits — an operand size overwrite (64) used to change
operand size from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
register set.
You may write the ‘rex’ prefixes directly. The ‘rex64xyz’ instruction emits ‘rex’ prefix
with all the bits set. By omitting the 64, x, y or z you may write other prefixes as well.
Normally, there is no need to write the prefixes explicitly, since gas will automatically
generate them based on the instruction operands.

8.10.6 Memory References

An Intel syntax indirect memory reference of the form
section:[base + index*scale + disp]

is translated into the AT&T syntax
section:disp(base, index, scale)

where base and index are the optional 32-bit base and index registers, disp is the optional
displacement, and scale, taking the values 1, 2, 4, and 8, multiplies index to calculate the
address of the operand. If no scale is specified, scale is taken to be 1. section specifies
the optional section register for the memory operand, and may override the default section
register (see a 80386 manual for section register defaults). Note that section overrides in
AT&T syntax must be preceded by a ‘%’. If you specify a section override which coincides
with the default section register, as does not output any section register override prefixes
to assemble the given instruction. Thus, section overrides can be specified to emphasize
which section register is used for a given memory operand.

Here are some examples of Intel and AT&T style memory references:

AT&T: ‘-4(%ebp)’, Intel: ‘[ebp - 4]’
base is ‘%ebp’; disp is ‘-4’. section is missing, and the default section is used
(‘%ss’ for addressing with ‘%ebp’ as the base register). index, scale are both
missing.

AT&T: ‘foo(,%eax,4)’, Intel: ‘[foo + eax*4]’
index is ‘%eax’ (scaled by a scale 4); disp is ‘foo’. All other fields are missing.
The section register here defaults to ‘%ds’.

AT&T: ‘foo(,1)’; Intel ‘[foo]’
This uses the value pointed to by ‘foo’ as a memory operand. Note that base
and index are both missing, but there is only one ‘,’. This is a syntactic
exception.

94 Using as

AT&T: ‘%gs:foo’; Intel ‘gs:foo’
This selects the contents of the variable ‘foo’ with section register section being
‘%gs’.

Absolute (as opposed to PC relative) call and jump operands must be prefixed with ‘*’.
If no ‘*’ is specified, as always chooses PC relative addressing for jump/call labels.

Any instruction that has a memory operand, but no register operand, must specify its
size (byte, word, long, or quadruple) with an instruction mnemonic suffix (‘b’, ‘w’, ‘l’ or ‘q’,
respectively).

The x86-64 architecture adds an RIP (instruction pointer relative) addressing. This
addressing mode is specified by using ‘rip’ as a base register. Only constant offsets are
valid. For example:

AT&T: ‘1234(%rip)’, Intel: ‘[rip + 1234]’
Points to the address 1234 bytes past the end of the current instruction.

AT&T: ‘symbol(%rip)’, Intel: ‘[rip + symbol]’
Points to the symbol in RIP relative way, this is shorter than the default abso-
lute addressing.

Other addressing modes remain unchanged in x86-64 architecture, except registers used
are 64-bit instead of 32-bit.

8.10.7 Handling of Jump Instructions

Jump instructions are always optimized to use the smallest possible displacements. This
is accomplished by using byte (8-bit) displacement jumps whenever the target is sufficiently
close. If a byte displacement is insufficient a long displacement is used. We do not support
word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump instruction with
the ‘data16’ instruction prefix), since the 80386 insists upon masking ‘%eip’ to 16 bits after
the word displacement is added. (See also see Section 8.10.12 [i386-Arch], page 96)

Note that the ‘jcxz’, ‘jecxz’, ‘loop’, ‘loopz’, ‘loope’, ‘loopnz’ and ‘loopne’ instruc-
tions only come in byte displacements, so that if you use these instructions (gcc does not
use them) you may get an error message (and incorrect code). The AT&T 80386 assembler
tries to get around this problem by expanding ‘jcxz foo’ to

jcxz cx_zero
jmp cx_nonzero

cx_zero: jmp foo
cx_nonzero:

8.10.8 Floating Point

All 80387 floating point types except packed BCD are supported. (BCD support may
be added without much difficulty). These data types are 16-, 32-, and 64- bit integers,
and single (32-bit), double (64-bit), and extended (80-bit) precision floating point. Each
supported type has an instruction mnemonic suffix and a constructor associated with it.

Chapter 8: Machine Dependent Features 95

Instruction mnemonic suffixes specify the operand’s data type. Constructors build these
data types into memory.
• Floating point constructors are ‘.float’ or ‘.single’, ‘.double’, and ‘.tfloat’ for

32-, 64-, and 80-bit formats. These correspond to instruction mnemonic suffixes ‘s’,
‘l’, and ‘t’. ‘t’ stands for 80-bit (ten byte) real. The 80387 only supports this format
via the ‘fldt’ (load 80-bit real to stack top) and ‘fstpt’ (store 80-bit real and pop
stack) instructions.

• Integer constructors are ‘.word’, ‘.long’ or ‘.int’, and ‘.quad’ for the 16-, 32-, and 64-
bit integer formats. The corresponding instruction mnemonic suffixes are ‘s’ (single),
‘l’ (long), and ‘q’ (quad). As with the 80-bit real format, the 64-bit ‘q’ format is only
present in the ‘fildq’ (load quad integer to stack top) and ‘fistpq’ (store quad integer
and pop stack) instructions.

Register to register operations should not use instruction mnemonic suffixes. ‘fstl %st,
%st(1)’ will give a warning, and be assembled as if you wrote ‘fst %st, %st(1)’, since all
register to register operations use 80-bit floating point operands. (Contrast this with ‘fstl
%st, mem’, which converts ‘%st’ from 80-bit to 64-bit floating point format, then stores the
result in the 4 byte location ‘mem’)

8.10.9 Intel’s MMX and AMD’s 3DNow! SIMD Operations

as supports Intel’s MMX instruction set (SIMD instructions for integer data), avail-
able on Intel’s Pentium MMX processors and Pentium II processors, AMD’s K6 and K6-2
processors, Cyrix’ M2 processor, and probably others. It also supports AMD’s 3DNow!
instruction set (SIMD instructions for 32-bit floating point data) available on AMD’s K6-2
processor and possibly others in the future.

Currently, as does not support Intel’s floating point SIMD, Katmai (KNI).
The eight 64-bit MMX operands, also used by 3DNow!, are called ‘%mm0’, ‘%mm1’, ...

‘%mm7’. They contain eight 8-bit integers, four 16-bit integers, two 32-bit integers, one 64-
bit integer, or two 32-bit floating point values. The MMX registers cannot be used at the
same time as the floating point stack.

See Intel and AMD documentation, keeping in mind that the operand order in instruc-
tions is reversed from the Intel syntax.

8.10.10 Writing 16-bit Code

While as normally writes only “pure” 32-bit i386 code or 64-bit x86-64 code depending
on the default configuration, it also supports writing code to run in real mode or in 16-bit
protected mode code segments. To do this, put a ‘.code16’ or ‘.code16gcc’ directive before
the assembly language instructions to be run in 16-bit mode. You can switch as back to
writing normal 32-bit code with the ‘.code32’ directive.

‘.code16gcc’ provides experimental support for generating 16-bit code from gcc, and
differs from ‘.code16’ in that ‘call’, ‘ret’, ‘enter’, ‘leave’, ‘push’, ‘pop’, ‘pusha’, ‘popa’,
‘pushf’, and ‘popf’ instructions default to 32-bit size. This is so that the stack pointer is

96 Using as

manipulated in the same way over function calls, allowing access to function parameters at
the same stack offsets as in 32-bit mode. ‘.code16gcc’ also automatically adds address size
prefixes where necessary to use the 32-bit addressing modes that gcc generates.

The code which as generates in 16-bit mode will not necessarily run on a 16-bit pre-
80386 processor. To write code that runs on such a processor, you must refrain from using
any 32-bit constructs which require as to output address or operand size prefixes.

Note that writing 16-bit code instructions by explicitly specifying a prefix or an instruc-
tion mnemonic suffix within a 32-bit code section generates different machine instructions
than those generated for a 16-bit code segment. In a 32-bit code section, the following code
generates the machine opcode bytes ‘66 6a 04’, which pushes the value ‘4’ onto the stack,
decrementing ‘%esp’ by 2.

pushw $4

The same code in a 16-bit code section would generate the machine opcode bytes ‘6a 04’
(ie. without the operand size prefix), which is correct since the processor default operand
size is assumed to be 16 bits in a 16-bit code section.

8.10.11 AT&T Syntax bugs

The UnixWare assembler, and probably other AT&T derived ix86 Unix assemblers,
generate floating point instructions with reversed source and destination registers in certain
cases. Unfortunately, gcc and possibly many other programs use this reversed syntax, so
we’re stuck with it.

For example
fsub %st,%st(3)

results in ‘%st(3)’ being updated to ‘%st - %st(3)’ rather than the expected ‘%st(3) -
%st’. This happens with all the non-commutative arithmetic floating point operations
with two register operands where the source register is ‘%st’ and the destination register is
‘%st(i)’.

8.10.12 Specifying CPU Architecture

as may be told to assemble for a particular CPU architecture with the .arch cpu type
directive. This directive enables a warning when gas detects an instruction that is not
supported on the CPU specified. The choices for cpu type are:
‘i8086’ ‘i186’ ‘i286’ ‘i386’
‘i486’ ‘i586’ ‘i686’ ‘pentium’
‘pentiumpro’ ‘pentium4’ ‘k6’ ‘athlon’
‘sledgehammer’

Apart from the warning, there are only two other effects on as operation; Firstly, if you
specify a CPU other than ‘i486’, then shift by one instructions such as ‘sarl $1, %eax’
will automatically use a two byte opcode sequence. The larger three byte opcode sequence
is used on the 486 (and when no architecture is specified) because it executes faster on
the 486. Note that you can explicitly request the two byte opcode by writing ‘sarl %eax’.

Chapter 8: Machine Dependent Features 97

Secondly, if you specify ‘i8086’, ‘i186’, or ‘i286’, and ‘.code16’ or ‘.code16gcc’ then byte
offset conditional jumps will be promoted when necessary to a two instruction sequence
consisting of a conditional jump of the opposite sense around an unconditional jump to the
target.

Following the CPU architecture, you may specify ‘jumps’ or ‘nojumps’ to control auto-
matic promotion of conditional jumps. ‘jumps’ is the default, and enables jump promotion;
All external jumps will be of the long variety, and file-local jumps will be promoted as
necessary. (see Section 8.10.7 [i386-Jumps], page 94) ‘nojumps’ leaves external conditional
jumps as byte offset jumps, and warns about file-local conditional jumps that as promotes.
Unconditional jumps are treated as for ‘jumps’.

For example
.arch i8086,nojumps

8.10.13 Notes

There is some trickery concerning the ‘mul’ and ‘imul’ instructions that deserves mention.
The 16-, 32-, 64- and 128-bit expanding multiplies (base opcode ‘0xf6’; extension 4 for ‘mul’
and 5 for ‘imul’) can be output only in the one operand form. Thus, ‘imul %ebx, %eax’
does not select the expanding multiply; the expanding multiply would clobber the ‘%edx’
register, and this would confuse gcc output. Use ‘imul %ebx’ to get the 64-bit product in
‘%edx:%eax’.

We have added a two operand form of ‘imul’ when the first operand is an immediate
mode expression and the second operand is a register. This is just a shorthand, so that,
multiplying ‘%eax’ by 69, for example, can be done with ‘imul $69, %eax’ rather than ‘imul
$69, %eax, %eax’.

98 Using as

8.11 Intel i860 Dependent Features

8.11.1 i860 Notes

This is a fairly complete i860 assembler which is compatible with the UNIX System
V/860 Release 4 assembler. However, it does not currently support SVR4 PIC (i.e., @GOT,
@GOTOFF, @PLT).

Like the SVR4/860 assembler, the output object format is ELF32. Currently, this is the
only supported object format. If there is sufficient interest, other formats such as COFF
may be implemented.

8.11.2 i860 Command-line Options

8.11.2.1 SVR4 compatibility options

-V Print assembler version.

-Qy Ignored.

-Qn Ignored.

8.11.2.2 Other options

-EL Select little endian output (this is the default).

-EB Select big endian output. Note that the i860 always reads instructions as little
endian data, so this option only effects data and not instructions.

-mwarn-expand
Emit a warning message if any pseudo-instruction expansions occurred. For ex-
ample, a or instruction with an immediate larger than 16-bits will be expanded
into two instructions. This is a very undesirable feature to rely on, so this flag
can help detect any code where it happens. One use of it, for instance, has been
to find and eliminate any place where gcc may emit these pseudo-instructions.

8.11.3 i860 Machine Directives

.dual Enter dual instruction mode. While this directive is supported, the preferred
way to use dual instruction mode is to explicitly code the dual bit with the d.
prefix.

.enddual Exit dual instruction mode. While this directive is supported, the preferred
way to use dual instruction mode is to explicitly code the dual bit with the d.
prefix.

Chapter 8: Machine Dependent Features 99

.atmp Change the temporary register used when expanding pseudo operations. The
default register is r31.

8.11.4 i860 Opcodes

All of the Intel i860 machine instructions are supported. Please see either i860 Micro-
processor Programmer’s Reference Manual or i860 Microprocessor Architecture for more
information.

8.11.4.1 Other instruction support (pseudo-instructions)

For compatibility with some other i860 assemblers, a number of pseudo-instructions are
supported. While these are supported, they are a very undesirable feature that should be
avoided – in particular, when they result in an expansion to multiple actual i860 instructions.
Below are the pseudo-instructions that result in expansions.
• Load large immediate into general register:

The pseudo-instruction mov imm,%rn (where the immediate does not fit within a signed
16-bit field) will be expanded into:

orh large_imm@h,%r0,%rn
or large_imm@l,%rn,%rn

• Load/store with relocatable address expression:
For example, the pseudo-instruction ld.b addr,%rn will be expanded into:

orh addr_exp@ha,%r0,%r31
ld.l addr_exp@l(%r31),%rn

The analogous expansions apply to ld.x, st.x, fld.x, pfld.x, fst.x, and pst.x as
well.

• Signed large immediate with add/subtract:
If any of the arithmetic operations adds, addu, subs, subu are used with an im-
mediate larger than 16-bits (signed), then they will be expanded. For instance, the
pseudo-instruction adds large_imm,%rx,%rn expands to:

orh large_imm@h,%r0,%r31
or large_imm@l,%r31,%r31
adds %r31,%rx,%rn

• Unsigned large immediate with logical operations:
Logical operations (or, andnot, or, xor) also result in expansions. The pseudo-
instruction or large_imm,%rx,%rn results in:

orh large_imm@h,%rx,%r31
or large_imm@l,%r31,%rn

Similarly for the others, except for and which expands to:
andnot (-1 - large_imm)@h,%rx,%r31
andnot (-1 - large_imm)@l,%r31,%rn

100 Using as

8.12 Intel 80960 Dependent Features

8.12.1 i960 Command-line Options

-ACA | -ACA_A | -ACB | -ACC | -AKA | -AKB | -AKC | -AMC
Select the 80960 architecture. Instructions or features not supported by the
selected architecture cause fatal errors.

‘-ACA’ is equivalent to ‘-ACA_A’; ‘-AKC’ is equivalent to ‘-AMC’. Synonyms are
provided for compatibility with other tools.

If you do not specify any of these options, as generates code for any instruction
or feature that is supported by some version of the 960 (even if this means mix-
ing architectures!). In principle, as attempts to deduce the minimal sufficient
processor type if none is specified; depending on the object code format, the
processor type may be recorded in the object file. If it is critical that the as
output match a specific architecture, specify that architecture explicitly.

-b Add code to collect information about conditional branches taken, for later
optimization using branch prediction bits. (The conditional branch instructions
have branch prediction bits in the CA, CB, and CC architectures.) If BR
represents a conditional branch instruction, the following represents the code
generated by the assembler when ‘-b’ is specified:

call increment routine
.word 0 # pre-counter

Label: BR
call increment routine
.word 0 # post-counter

The counter following a branch records the number of times that branch was
not taken; the differenc between the two counters is the number of times the
branch was taken.

A table of every such Label is also generated, so that the external postprocessor
gbr960 (supplied by Intel) can locate all the counters. This table is always la-
belled ‘__BRANCH_TABLE__’; this is a local symbol to permit collecting statistics
for many separate object files. The table is word aligned, and begins with a
two-word header. The first word, initialized to 0, is used in maintaining linked
lists of branch tables. The second word is a count of the number of entries
in the table, which follow immediately: each is a word, pointing to one of the
labels illustrated above.

Chapter 8: Machine Dependent Features 101

*NEXT COUNT: N *BRLAB 1 . . . *BRLAB N

BRANCH TABLE layout
The first word of the header is used to locate multiple branch tables, since each
object file may contain one. Normally the links are maintained with a call to
an initialization routine, placed at the beginning of each function in the file.
The gnu C compiler generates these calls automatically when you give it a ‘-b’
option. For further details, see the documentation of ‘gbr960’.

-no-relax
Normally, Compare-and-Branch instructions with targets that require displace-
ments greater than 13 bits (or that have external targets) are replaced with
the corresponding compare (or ‘chkbit’) and branch instructions. You can use
the ‘-no-relax’ option to specify that as should generate errors instead, if the
target displacement is larger than 13 bits.
This option does not affect the Compare-and-Jump instructions; the code emit-
ted for them is always adjusted when necessary (depending on displacement
size), regardless of whether you use ‘-no-relax’.

8.12.2 Floating Point

as generates ieee floating-point numbers for the directives ‘.float’, ‘.double’, ‘.extended’,
and ‘.single’.

8.12.3 i960 Machine Directives

.bss symbol, length, align
Reserve length bytes in the bss section for a local symbol, aligned to the power
of two specified by align. length and align must be positive absolute expressions.
This directive differs from ‘.lcomm’ only in that it permits you to specify an
alignment. See Section 7.41 [.lcomm], page 44.

.extended flonums
.extended expects zero or more flonums, separated by commas; for each
flonum, ‘.extended’ emits an ieee extended-format (80-bit) floating-point
number.

.leafproc call-lab, bal-lab
You can use the ‘.leafproc’ directive in conjunction with the optimized callj
instruction to enable faster calls of leaf procedures. If a procedure is known to
call no other procedures, you may define an entry point that skips procedure
prolog code (and that does not depend on system-supplied saved context), and
declare it as the bal-lab using ‘.leafproc’. If the procedure also has an entry

102 Using as

point that goes through the normal prolog, you can specify that entry point as
call-lab.
A ‘.leafproc’ declaration is meant for use in conjunction with the optimized
call instruction ‘callj’; the directive records the data needed later to choose
between converting the ‘callj’ into a bal or a call.
call-lab is optional; if only one argument is present, or if the two arguments are
identical, the single argument is assumed to be the bal entry point.

.sysproc name, index
The ‘.sysproc’ directive defines a name for a system procedure. After you
define it using ‘.sysproc’, you can use name to refer to the system procedure
identified by index when calling procedures with the optimized call instruction
‘callj’.
Both arguments are required; index must be between 0 and 31 (inclusive).

8.12.4 i960 Opcodes

All Intel 960 machine instructions are supported; see Section 8.12.1 [i960 Command-line
Options], page 100 for a discussion of selecting the instruction subset for a particular 960
architecture.

Some opcodes are processed beyond simply emitting a single corresponding instruction:
‘callj’, and Compare-and-Branch or Compare-and-Jump instructions with target displace-
ments larger than 13 bits.

8.12.4.1 callj

You can write callj to have the assembler or the linker determine the most appro-
priate form of subroutine call: ‘call’, ‘bal’, or ‘calls’. If the assembly source contains
enough information—a ‘.leafproc’ or ‘.sysproc’ directive defining the operand—then as
translates the callj; if not, it simply emits the callj, leaving it for the linker to resolve.

8.12.4.2 Compare-and-Branch

The 960 architectures provide combined Compare-and-Branch instructions that permit
you to store the branch target in the lower 13 bits of the instruction word itself. However,
if you specify a branch target far enough away that its address won’t fit in 13 bits, the
assembler can either issue an error, or convert your Compare-and-Branch instruction into
separate instructions to do the compare and the branch.

Whether as gives an error or expands the instruction depends on two choices you can
make: whether you use the ‘-no-relax’ option, and whether you use a “Compare and
Branch” instruction or a “Compare and Jump” instruction. The “Jump” instructions are
always expanded if necessary; the “Branch” instructions are expanded when necessary un-
less you specify -no-relax—in which case as gives an error instead.

Chapter 8: Machine Dependent Features 103

These are the Compare-and-Branch instructions, their “Jump” variants, and the instruc-
tion pairs they may expand into:

Compare and
Branch Jump Expanded to

bbc chkbit; bno
bbs chkbit; bo

cmpibe cmpije cmpi; be
cmpibg cmpijg cmpi; bg
cmpibge cmpijge cmpi; bge
cmpibl cmpijl cmpi; bl
cmpible cmpijle cmpi; ble
cmpibno cmpijno cmpi; bno
cmpibne cmpijne cmpi; bne
cmpibo cmpijo cmpi; bo
cmpobe cmpoje cmpo; be
cmpobg cmpojg cmpo; bg
cmpobge cmpojge cmpo; bge
cmpobl cmpojl cmpo; bl
cmpoble cmpojle cmpo; ble
cmpobne cmpojne cmpo; bne

104 Using as

8.13 M32R Dependent Features

8.13.1 M32R Options

The Mitsubishi M32R version of as has a few machine dependent options:

-m32rx as can assemble code for several different members of the Mitsubishi M32R
family. Normally the default is to assemble code for the M32R microprocessor.
This option may be used to change the default to the M32RX microprocessor,
which adds some more instructions to the basic M32R instruction set, and some
additional parameters to some of the original instructions.

-m32r This option can be used to restore the assembler’s default behaviour of assem-
bling for the M32R microprocessor. This can be useful if the default has been
changed by a previous command line option.

-warn-explicit-parallel-conflicts
Instructs as to produce warning messages when questionable parallel instruc-
tions are encountered. This option is enabled by default, but gcc disables
it when it invokes as directly. Questionable instructions are those whoes be-
haviour would be different if they were executed sequentially. For example the
code fragment ‘mv r1, r2 || mv r3, r1’ produces a different result from ‘mv
r1, r2 \n mv r3, r1’ since the former moves r1 into r3 and then r2 into r1,
whereas the later moves r2 into r1 and r3.

-Wp This is a shorter synonym for the -warn-explicit-parallel-conflicts option.

-no-warn-explicit-parallel-conflicts
Instructs as not to produce warning messages when questionable parallel in-
structions are encountered.

-Wnp This is a shorter synonym for the -no-warn-explicit-parallel-conflicts option.

8.13.2 M32R Warnings

There are several warning and error messages that can be produced by as which are
specific to the M32R:

output of 1st instruction is the same as an input to 2nd instruction - is this
intentional ?

This message is only produced if warnings for explicit parallel conflicts have
been enabled. It indicates that the assembler has encountered a parallel in-
struction in which the destination register of the left hand instruction is used
as an input register in the right hand instruction. For example in this code
fragment ‘mv r1, r2 || neg r3, r1’ register r1 is the destination of the move
instruction and the input to the neg instruction.

Chapter 8: Machine Dependent Features 105

output of 2nd instruction is the same as an input to 1st instruction - is this
intentional ?

This message is only produced if warnings for explicit parallel conflicts have
been enabled. It indicates that the assembler has encountered a parallel in-
struction in which the destination register of the right hand instruction is used
as an input register in the left hand instruction. For example in this code
fragment ‘mv r1, r2 || neg r2, r3’ register r2 is the destination of the neg
instruction and the input to the move instruction.

instruction ‘...’ is for the M32RX only
This message is produced when the assembler encounters an instruction which
is only supported by the M32Rx processor, and the ‘-m32rx’ command line flag
has not been specified to allow assembly of such instructions.

unknown instruction ‘...’
This message is produced when the assembler encounters an instruction which
it doe snot recognise.

only the NOP instruction can be issued in parallel on the m32r
This message is produced when the assembler encounters a parallel instruction
which does not involve a NOP instruction and the ‘-m32rx’ command line
flag has not been specified. Only the M32Rx processor is able to execute two
instructions in parallel.

instruction ‘...’ cannot be executed in parallel.
This message is produced when the assembler encounters a parallel instruction
which is made up of one or two instructions which cannot be executed in parallel.

Instructions share the same execution pipeline
This message is produced when the assembler encounters a parallel instruction
whoes components both use the same execution pipeline.

Instructions write to the same destination register.
This message is produced when the assembler encounters a parallel instruction
where both components attempt to modify the same register. For example these
code fragments will produce this message: ‘mv r1, r2 || neg r1, r3’ ‘jl r0 ||
mv r14, r1’ ‘st r2, @-r1 || mv r1, r3’ ‘mv r1, r2 || ld r0, @r1+’ ‘cmp r1,
r2 || addx r3, r4’ (Both write to the condition bit)

106 Using as

8.14 M680x0 Dependent Features

8.14.1 M680x0 Options

The Motorola 680x0 version of as has a few machine dependent options:

‘-l’ You can use the ‘-l’ option to shorten the size of references to undefined sym-
bols. If you do not use the ‘-l’ option, references to undefined symbols are wide
enough for a full long (32 bits). (Since as cannot know where these symbols
end up, as can only allocate space for the linker to fill in later. Since as does
not know how far away these symbols are, it allocates as much space as it can.)
If you use this option, the references are only one word wide (16 bits). This
may be useful if you want the object file to be as small as possible, and you
know that the relevant symbols are always less than 17 bits away.

‘--register-prefix-optional’
For some configurations, especially those where the compiler normally does not
prepend an underscore to the names of user variables, the assembler requires
a ‘%’ before any use of a register name. This is intended to let the assembler
distinguish between C variables and functions named ‘a0’ through ‘a7’, and so
on. The ‘%’ is always accepted, but is not required for certain configurations,
notably ‘sun3’. The ‘--register-prefix-optional’ option may be used to
permit omitting the ‘%’ even for configurations for which it is normally required.
If this is done, it will generally be impossible to refer to C variables and functions
with the same names as register names.

‘--bitwise-or’
Normally the character ‘|’ is treated as a comment character, which means that
it can not be used in expressions. The ‘--bitwise-or’ option turns ‘|’ into a
normal character. In this mode, you must either use C style comments, or start
comments with a ‘#’ character at the beginning of a line.

‘--base-size-default-16 --base-size-default-32’
If you use an addressing mode with a base register without specifying the
size, as will normally use the full 32 bit value. For example, the address-
ing mode ‘%a0@(%d0)’ is equivalent to ‘%a0@(%d0:l)’. You may use the
‘--base-size-default-16’ option to tell as to default to using the 16 bit
value. In this case, ‘%a0@(%d0)’ is equivalent to ‘%a0@(%d0:w)’. You may use
the ‘--base-size-default-32’ option to restore the default behaviour.

‘--disp-size-default-16 --disp-size-default-32’
If you use an addressing mode with a displacement, and the value of the dis-
placement is not known, as will normally assume that the value is 32 bits. For
example, if the symbol ‘disp’ has not been defined, as will assemble the ad-
dressing mode ‘%a0@(disp,%d0)’ as though ‘disp’ is a 32 bit value. You may
use the ‘--disp-size-default-16’ option to tell as to instead assume that

Chapter 8: Machine Dependent Features 107

the displacement is 16 bits. In this case, as will assemble ‘%a0@(disp,%d0)’ as
though ‘disp’ is a 16 bit value. You may use the ‘--disp-size-default-32’
option to restore the default behaviour.

‘--pcrel’ Always keep branches PC-relative. In the M680x0 architecture all branches are
defined as PC-relative. However, on some processors they are limited to word
displacements maximum. When as needs a long branch that is not available,
it normally emits an absolute jump instead. This option disables this substitu-
tion. When this option is given and no long branches are available, only word
branches will be emitted. An error message will be generated if a word branch
cannot reach its target. This option has no effect on 68020 and other processors
that have long branches. see Section 8.14.6.1 [Branch Improvement], page 111.

‘-m68000’ as can assemble code for several different members of the Motorola 680x0 family.
The default depends upon how as was configured when it was built; normally,
the default is to assemble code for the 68020 microprocessor. The following
options may be used to change the default. These options control which in-
structions and addressing modes are permitted. The members of the 680x0
family are very similar. For detailed information about the differences, see the
Motorola manuals.

‘-m68000’
‘-m68ec000’
‘-m68hc000’
‘-m68hc001’
‘-m68008’
‘-m68302’
‘-m68306’
‘-m68307’
‘-m68322’
‘-m68356’ Assemble for the 68000. ‘-m68008’, ‘-m68302’, and so on are syn-

onyms for ‘-m68000’, since the chips are the same from the point
of view of the assembler.

‘-m68010’ Assemble for the 68010.

‘-m68020’
‘-m68ec020’

Assemble for the 68020. This is normally the default.

‘-m68030’
‘-m68ec030’

Assemble for the 68030.

‘-m68040’
‘-m68ec040’

Assemble for the 68040.

‘-m68060’
‘-m68ec060’

Assemble for the 68060.

108 Using as

‘-mcpu32’
‘-m68330’
‘-m68331’
‘-m68332’
‘-m68333’
‘-m68334’
‘-m68336’
‘-m68340’
‘-m68341’
‘-m68349’
‘-m68360’ Assemble for the CPU32 family of chips.

‘-m5200’ Assemble for the ColdFire family of chips.

‘-m68881’
‘-m68882’ Assemble 68881 floating point instructions. This is the default for

the 68020, 68030, and the CPU32. The 68040 and 68060 always
support floating point instructions.

‘-mno-68881’
Do not assemble 68881 floating point instructions. This is the de-
fault for 68000 and the 68010. The 68040 and 68060 always support
floating point instructions, even if this option is used.

‘-m68851’ Assemble 68851 MMU instructions. This is the default for the
68020, 68030, and 68060. The 68040 accepts a somewhat different
set of MMU instructions; ‘-m68851’ and ‘-m68040’ should not be
used together.

‘-mno-68851’
Do not assemble 68851 MMU instructions. This is the default for
the 68000, 68010, and the CPU32. The 68040 accepts a somewhat
different set of MMU instructions.

8.14.2 Syntax

This syntax for the Motorola 680x0 was developed at mit.
The 680x0 version of as uses instructions names and syntax compatible with the Sun

assembler. Intervening periods are ignored; for example, ‘movl’ is equivalent to ‘mov.l’.
In the following table apc stands for any of the address registers (‘%a0’ through ‘%a7’),

the program counter (‘%pc’), the zero-address relative to the program counter (‘%zpc’), a
suppressed address register (‘%za0’ through ‘%za7’), or it may be omitted entirely. The use
of size means one of ‘w’ or ‘l’, and it may be omitted, along with the leading colon, unless
a scale is also specified. The use of scale means one of ‘1’, ‘2’, ‘4’, or ‘8’, and it may always
be omitted along with the leading colon.

The following addressing modes are understood:

Immediate
‘#number’

Chapter 8: Machine Dependent Features 109

Data Register
‘%d0’ through ‘%d7’

Address Register
‘%a0’ through ‘%a7’
‘%a7’ is also known as ‘%sp’, i.e. the Stack Pointer. %a6 is also known as ‘%fp’,
the Frame Pointer.

Address Register Indirect
‘%a0@’ through ‘%a7@’

Address Register Postincrement
‘%a0@+’ through ‘%a7@+’

Address Register Predecrement
‘%a0@-’ through ‘%a7@-’

Indirect Plus Offset
‘apc@(number)’

Index ‘apc@(number,register:size:scale)’
The number may be omitted.

Postindex ‘apc@(number)@(onumber,register:size:scale)’
The onumber or the register, but not both, may be omitted.

Preindex ‘apc@(number,register:size:scale)@(onumber)’
The number may be omitted. Omitting the register produces the Postindex
addressing mode.

Absolute ‘symbol’, or ‘digits’, optionally followed by ‘:b’, ‘:w’, or ‘:l’.

8.14.3 Motorola Syntax

The standard Motorola syntax for this chip differs from the syntax already discussed
(see Section 8.14.2 [Syntax], page 108). as can accept Motorola syntax for operands, even
if mit syntax is used for other operands in the same instruction. The two kinds of syntax
are fully compatible.

In the following table apc stands for any of the address registers (‘%a0’ through ‘%a7’),
the program counter (‘%pc’), the zero-address relative to the program counter (‘%zpc’), or
a suppressed address register (‘%za0’ through ‘%za7’). The use of size means one of ‘w’ or
‘l’, and it may always be omitted along with the leading dot. The use of scale means one
of ‘1’, ‘2’, ‘4’, or ‘8’, and it may always be omitted along with the leading asterisk.

The following additional addressing modes are understood:

Address Register Indirect
‘(%a0)’ through ‘(%a7)’
‘%a7’ is also known as ‘%sp’, i.e. the Stack Pointer. %a6 is also known as ‘%fp’,
the Frame Pointer.

110 Using as

Address Register Postincrement
‘(%a0)+’ through ‘(%a7)+’

Address Register Predecrement
‘-(%a0)’ through ‘-(%a7)’

Indirect Plus Offset
‘number(%a0)’ through ‘number(%a7)’, or ‘number(%pc)’.
The number may also appear within the parentheses, as in ‘(number,%a0)’.
When used with the pc, the number may be omitted (with an address register,
omitting the number produces Address Register Indirect mode).

Index ‘number(apc,register.size*scale)’
The number may be omitted, or it may appear within the parentheses. The
apc may be omitted. The register and the apc may appear in either order. If
both apc and register are address registers, and the size and scale are omitted,
then the first register is taken as the base register, and the second as the index
register.

Postindex ‘([number,apc],register.size*scale,onumber)’
The onumber, or the register, or both, may be omitted. Either the number or
the apc may be omitted, but not both.

Preindex ‘([number,apc,register.size*scale],onumber)’
The number, or the apc, or the register, or any two of them, may be omitted.
The onumber may be omitted. The register and the apc may appear in either
order. If both apc and register are address registers, and the size and scale are
omitted, then the first register is taken as the base register, and the second as
the index register.

8.14.4 Floating Point

Packed decimal (P) format floating literals are not supported. Feel free to add the code!
The floating point formats generated by directives are these.

.float Single precision floating point constants.

.double Double precision floating point constants.

.extend

.ldouble Extended precision (long double) floating point constants.

8.14.5 680x0 Machine Directives

In order to be compatible with the Sun assembler the 680x0 assembler understands the
following directives.

.data1 This directive is identical to a .data 1 directive.

Chapter 8: Machine Dependent Features 111

.data2 This directive is identical to a .data 2 directive.

.even This directive is a special case of the .align directive; it aligns the output to
an even byte boundary.

.skip This directive is identical to a .space directive.

8.14.6 Opcodes

8.14.6.1 Branch Improvement

Certain pseudo opcodes are permitted for branch instructions. They expand to the
shortest branch instruction that reach the target. Generally these mnemonics are made by
substituting ‘j’ for ‘b’ at the start of a Motorola mnemonic.

The following table summarizes the pseudo-operations. A * flags cases that are more
fully described after the table:

Displacement
+--
| 68020 68000/10, not PC-relative OK

Pseudo-Op |BYTE WORD LONG ABSOLUTE LONG JUMP **
+--

jbsr |bsrs bsrw bsrl jsr
jra |bras braw bral jmp

* jXX |bXXs bXXw bXXl bNXs;jmp
* dbXX | N/A dbXXw dbXX;bras;bral dbXX;bras;jmp

fjXX | N/A fbXXw fbXXl N/A

XX: condition
NX: negative of condition XX

*—see full description below
**—this expansion mode is disallowed by ‘--pcrel’

jbsr
jra These are the simplest jump pseudo-operations; they always map to one partic-

ular machine instruction, depending on the displacement to the branch target.
This instruction will be a byte or word branch is that is sufficient. Otherwise,
a long branch will be emitted if available. If no long branches are available
and the ‘--pcrel’ option is not given, an absolute long jump will be emitted
instead. If no long branches are available, the ‘--pcrel’ option is given, and a
word branch cannot reach the target, an error message is generated.

In addition to standard branch operands, as allows these pseudo-operations to
have all operands that are allowed for jsr and jmp, substituting these instruc-
tions if the operand given is not valid for a branch instruction.

112 Using as

jXX Here, ‘jXX ’ stands for an entire family of pseudo-operations, where XX is a
conditional branch or condition-code test. The full list of pseudo-ops in this
family is:

jhi jls jcc jcs jne jeq jvc
jvs jpl jmi jge jlt jgt jle

Usually, each of these pseudo-operations expands to a single branch instruction.
However, if a word branch is not sufficient, no long branches are available, and
the ‘--pcrel’ option is not given, as issues a longer code fragment in terms of
NX, the opposite condition to XX. For example, under these conditions:

jXX foo

gives
bNXs oof
jmp foo

oof:

dbXX The full family of pseudo-operations covered here is
dbhi dbls dbcc dbcs dbne dbeq dbvc
dbvs dbpl dbmi dbge dblt dbgt dble
dbf dbra dbt

Motorola ‘dbXX ’ instructions allow word displacements only. When a word
displacement is sufficient, each of these pseudo-operations expands to the cor-
responding Motorola instruction. When a word displacement is not sufficient
and long branches are available, when the source reads ‘dbXX foo’, as emits

dbXX oo1
bras oo2

oo1:bral foo
oo2:

If, however, long branches are not available and the ‘--pcrel’ option is not
given, as emits

dbXX oo1
bras oo2

oo1:jmp foo
oo2:

fjXX This family includes
fjne fjeq fjge fjlt fjgt fjle fjf
fjt fjgl fjgle fjnge fjngl fjngle fjngt
fjnle fjnlt fjoge fjogl fjogt fjole fjolt
fjor fjseq fjsf fjsne fjst fjueq fjuge
fjugt fjule fjult fjun

Each of these pseudo-operations always expands to a single Motorola coproces-
sor branch instruction, word or long. All Motorola coprocessor branch instruc-
tions allow both word and long displacements.

8.14.6.2 Special Characters

Chapter 8: Machine Dependent Features 113

The immediate character is ‘#’ for Sun compatibility. The line-comment character is ‘|’
(unless the ‘--bitwise-or’ option is used). If a ‘#’ appears at the beginning of a line, it is
treated as a comment unless it looks like ‘# line file’, in which case it is treated normally.

114 Using as

8.15 M68HC11 and M68HC12 Dependent Features

8.15.1 M68HC11 and M68HC12 Options

The Motorola 68HC11 and 68HC12 version of as has a few machine dependent options.
This option switches the assembler in the M68HC11 mode. In this mode, the assembler

only accepts 68HC11 operands and mnemonics. It produces code for the 68HC11.
This option switches the assembler in the M68HC12 mode. In this mode, the assem-

bler also accepts 68HC12 operands and mnemonics. It produces code for the 68HC12. A
fiew 68HC11 instructions are replaced by some 68HC12 instructions as recommended by
Motorola specifications.

You can use the ‘--strict-direct-mode’ option to disable the automatic translation
of direct page mode addressing into extended mode when the instruction does not support
direct mode. For example, the ‘clr’ instruction does not support direct page mode address-
ing. When it is used with the direct page mode, as will ignore it and generate an absolute
addressing. This option prevents as from doing this, and the wrong usage of the direct page
mode will raise an error.

The ‘--short-branchs’ option turns off the translation of relative branches into absolute
branches when the branch offset is out of range. By default as transforms the relative branch
(‘bsr’, ‘bgt’, ‘bge’, ‘beq’, ‘bne’, ‘ble’, ‘blt’, ‘bhi’, ‘bcc’, ‘bls’, ‘bcs’, ‘bmi’, ‘bvs’, ‘bvs’,
‘bra’) into an absolute branch when the offset is out of the -128 .. 127 range. In that case,
the ‘bsr’ instruction is translated into a ‘jsr’, the ‘bra’ instruction is translated into a
‘jmp’ and the conditional branchs instructions are inverted and followed by a ‘jmp’. This
option disables these translations and as will generate an error if a relative branch is out
of range. This option does not affect the optimization associated to the ‘jbra’, ‘jbsr’ and
‘jbXX’ pseudo opcodes.

The ‘--force-long-branchs’ option forces the translation of relative branches into ab-
solute branches. This option does not affect the optimization associated to the ‘jbra’,
‘jbsr’ and ‘jbXX’ pseudo opcodes.

You can use the ‘--print-insn-syntax’ option to obtain the syntax description of the
instruction when an error is detected.

The ‘--print-opcodes’ option prints the list of all the instructions with their syntax.
The first item of each line represents the instruction name and the rest of the line indicates
the possible operands for that instruction. The list is printed in alphabetical order. Once
the list is printed as exits.

The ‘--generate-example’ option is similar to ‘--print-opcodes’ but it generates an
example for each instruction instead.

8.15.2 Syntax

In the M68HC11 syntax, the instruction name comes first and it may be followed by one
or several operands (up to three). Operands are separated by comma (‘,’). In the normal

Chapter 8: Machine Dependent Features 115

mode, as will complain if too many operands are specified for a given instruction. In the
MRI mode (turned on with ‘-M’ option), it will treat them as comments. Example:

inx
lda #23
bset 2,x #4
brclr *bot #8 foo

The following addressing modes are understood:

Immediate
‘#number’

Address Register
‘number,X’, ‘number,Y’
The number may be omitted in which case 0 is assumed.

Direct Addressing mode
‘*symbol’, or ‘*digits’

Absolute ‘symbol’, or ‘digits’

8.15.3 Floating Point

Packed decimal (P) format floating literals are not supported. Feel free to add the code!
The floating point formats generated by directives are these.

.float Single precision floating point constants.

.double Double precision floating point constants.

.extend

.ldouble Extended precision (long double) floating point constants.

8.15.4 Opcodes

8.15.4.1 Branch Improvement

Certain pseudo opcodes are permitted for branch instructions. They expand to the
shortest branch instruction that reach the target. Generally these mnemonics are made by
prepending ‘j’ to the start of Motorola mnemonic. These pseudo opcodes are not affected
by the ‘--short-branchs’ or ‘--force-long-branchs’ options.

The following table summarizes the pseudo-operations.
Displacement Width

+---+
| Options |
| --short-branchs --force-long-branchs |

116 Using as

+--------------------------+----------------------------------+
Pseudo-Op |BYTE WORD | BYTE WORD |

+--------------------------+----------------------------------+
bsr | bsr <pc-rel> <error> | jsr <abs> |
bra | bra <pc-rel> <error> | jmp <abs> |
jbsr | bsr <pc-rel> jsr <abs> | bsr <pc-rel> jsr <abs> |
jbra | bra <pc-rel> jmp <abs> | bra <pc-rel> jmp <abs> |
bXX | bXX <pc-rel> <error> | bNX +3; jmp <abs> |
jbXX | bXX <pc-rel> bNX +3; | bXX <pc-rel> bNX +3; jmp <abs> |

| jmp <abs> | |
+--------------------------+----------------------------------+

XX: condition
NX: negative of condition XX

jbsr
jbra These are the simplest jump pseudo-operations; they always map to one partic-

ular machine instruction, depending on the displacement to the branch target.

jbXX Here, ‘jbXX ’ stands for an entire family of pseudo-operations, where XX is a
conditional branch or condition-code test. The full list of pseudo-ops in this
family is:

jbcc jbeq jbge jbgt jbhi jbvs jbpl jblo
jbcs jbne jblt jble jbls jbvc jbmi

For the cases of non-PC relative displacements and long displacements, as issues
a longer code fragment in terms of NX, the opposite condition to XX. For
example, for the non-PC relative case:

jbXX foo

gives
bNXs oof
jmp foo

oof:

Chapter 8: Machine Dependent Features 117

8.16 MIPS Dependent Features

gnu as for mips architectures supports several different mips processors, and MIPS ISA
levels I through V, MIPS32, and MIPS64. For information about the mips instruction set,
see MIPS RISC Architecture, by Kane and Heindrich (Prentice-Hall). For an overview of
mips assembly conventions, see “Appendix D: Assembly Language Programming” in the
same work.

8.16.1 Assembler options

The mips configurations of gnu as support these special options:

-G num This option sets the largest size of an object that can be referenced implicitly
with the gp register. It is only accepted for targets that use ecoff format. The
default value is 8.

-EB
-EL Any mips configuration of as can select big-endian or little-endian output at run

time (unlike the other gnu development tools, which must be configured for one
or the other). Use ‘-EB’ to select big-endian output, and ‘-EL’ for little-endian.

-mips1
-mips2
-mips3
-mips4
-mips5
-mips32
-mips64 Generate code for a particular MIPS Instruction Set Architecture level.

‘-mips1’ corresponds to the r2000 and r3000 processors, ‘-mips2’ to the
r6000 processor, ‘-mips3’ to the r4000 processor, and ‘-mips4’ to the r8000

and r10000 processors. ‘-mips5’, ‘-mips32’, and ‘-mips64’ correspond to
generic MIPS V, MIPS32, and MIPS64 ISA processors, respectively. You
can also switch instruction sets during the assembly; see Section 8.16.4 [MIPS
ISA], page 119.

-mgp32 Assume that 32-bit general purpose registers are available. This affects syn-
thetic instructions such as move, which will assemble to a 32-bit or a 64-bit
instruction depending on this flag. On some MIPS variants there is a 32-bit
mode flag; when this flag is set, 64-bit instructions generate a trap. Also, some
32-bit OSes only save the 32-bit registers on a context switch, so it is essential
never to use the 64-bit registers.

-mgp64 Assume that 64-bit general purpose registers are available. This is provided in
the interests of symmetry with -gp32.

-mips16
-no-mips16

Generate code for the MIPS 16 processor. This is equivalent to putting ‘.set
mips16’ at the start of the assembly file. ‘-no-mips16’ turns off this option.

118 Using as

-mfix7000
-no-mfix7000

Cause nops to be inserted if the read of the destination register of an mfhi or
mflo instruction occurs in the following two instructions.

-m4010
-no-m4010

Generate code for the LSI r4010 chip. This tells the assembler to accept the
r4010 specific instructions (‘addciu’, ‘ffc’, etc.), and to not schedule ‘nop’
instructions around accesses to the ‘HI’ and ‘LO’ registers. ‘-no-m4010’ turns
off this option.

-m4650
-no-m4650

Generate code for the MIPS r4650 chip. This tells the assembler to accept
the ‘mad’ and ‘madu’ instruction, and to not schedule ‘nop’ instructions around
accesses to the ‘HI’ and ‘LO’ registers. ‘-no-m4650’ turns off this option.

-m3900
-no-m3900
-m4100
-no-m4100

For each option ‘-mnnnn’, generate code for the MIPS rnnnn chip. This tells
the assembler to accept instructions specific to that chip, and to schedule for
that chip’s hazards.

-mcpu=cpu
Generate code for a particular MIPS cpu. It is exactly equivalent to ‘-mcpu’,
except that there are more value of cpu understood. Valid cpu value are:

2000, 3000, 3900, 4000, 4010, 4100, 4111, 4300, 4400, 4600, 4650,
5000, rm5200, rm5230, rm5231, rm5261, rm5721, 6000, rm7000,
8000, 10000, mips32-4k, sb1

-nocpp This option is ignored. It is accepted for command-line compatibility with
other assemblers, which use it to turn off C style preprocessing. With gnu as,
there is no need for ‘-nocpp’, because the gnu assembler itself never runs the
C preprocessor.

--construct-floats
--no-construct-floats

The --no-construct-floats option disables the construction of double width
floating point constants by loading the two halves of the value into the two
single width floating point registers that make up the double width register.
This feature is useful if the processor support the FR bit in its status register,
and this bit is known (by the programmer) to be set. This bit prevents the
aliasing of the double width register by the single width registers.

By default --construct-floats is selected, allowing construction of these
floating point constants.

Chapter 8: Machine Dependent Features 119

--trap
--no-break

as automatically macro expands certain division and multiplication instruc-
tions to check for overflow and division by zero. This option causes as to
generate code to take a trap exception rather than a break exception when an
error is detected. The trap instructions are only supported at Instruction Set
Architecture level 2 and higher.

--break
--no-trap

Generate code to take a break exception rather than a trap exception when an
error is detected. This is the default.

8.16.2 MIPS ECOFF object code

Assembling for a mips ecoff target supports some additional sections besides the usual
.text, .data and .bss. The additional sections are .rdata, used for read-only data,
.sdata, used for small data, and .sbss, used for small common objects.

When assembling for ecoff, the assembler uses the $gp ($28) register to form the
address of a “small object”. Any object in the .sdata or .sbss sections is considered
“small” in this sense. For external objects, or for objects in the .bss section, you can use
the gcc ‘-G’ option to control the size of objects addressed via $gp; the default value is 8,
meaning that a reference to any object eight bytes or smaller uses $gp. Passing ‘-G 0’ to as
prevents it from using the $gp register on the basis of object size (but the assembler uses
$gp for objects in .sdata or sbss in any case). The size of an object in the .bss section
is set by the .comm or .lcomm directive that defines it. The size of an external object may
be set with the .extern directive. For example, ‘.extern sym,4’ declares that the object
at sym is 4 bytes in length, whie leaving sym otherwise undefined.

Using small ecoff objects requires linker support, and assumes that the $gp register
is correctly initialized (normally done automatically by the startup code). mips ecoff

assembly code must not modify the $gp register.

8.16.3 Directives for debugging information

mips ecoff as supports several directives used for generating debugging information
which are not support by traditional mips assemblers. These are .def, .endef, .dim, .file,
.scl, .size, .tag, .type, .val, .stabd, .stabn, and .stabs. The debugging information
generated by the three .stab directives can only be read by gdb, not by traditional mips

debuggers (this enhancement is required to fully support C++ debugging). These directives
are primarily used by compilers, not assembly language programmers!

8.16.4 Directives to override the ISA level

gnu as supports an additional directive to change the mips Instruction Set Architecture
level on the fly: .set mipsn. n should be a number from 0 to 5, or 32 or 64. The values

120 Using as

1 to 5, 32, and 64 make the assembler accept instructions for the corresponding isa level,
from that point on in the assembly. .set mipsn affects not only which instructions are
permitted, but also how certain macros are expanded. .set mips0 restores the isa level to
its original level: either the level you selected with command line options, or the default
for your configuration. You can use this feature to permit specific r4000 instructions while
assembling in 32 bit mode. Use this directive with care!

The directive ‘.set mips16’ puts the assembler into MIPS 16 mode, in which it will
assemble instructions for the MIPS 16 processor. Use ‘.set nomips16’ to return to normal
32 bit mode.

Traditional mips assemblers do not support this directive.

8.16.5 Directives for extending MIPS 16 bit instructions

By default, MIPS 16 instructions are automatically extended to 32 bits when necessary.
The directive ‘.set noautoextend’ will turn this off. When ‘.set noautoextend’ is in
effect, any 32 bit instruction must be explicitly extended with the ‘.e’ modifier (e.g., ‘li.e
$4,1000’). The directive ‘.set autoextend’ may be used to once again automatically
extend instructions when necessary.

This directive is only meaningful when in MIPS 16 mode. Traditional mips assemblers
do not support this directive.

8.16.6 Directive to mark data as an instruction

The .insn directive tells as that the following data is actually instructions. This makes a
difference in MIPS 16 mode: when loading the address of a label which precedes instructions,
as automatically adds 1 to the value, so that jumping to the loaded address will do the
right thing.

8.16.7 Directives to save and restore options

The directives .set push and .set pop may be used to save and restore the current
settings for all the options which are controlled by .set. The .set push directive saves the
current settings on a stack. The .set pop directive pops the stack and restores the settings.

These directives can be useful inside an macro which must change an option such as the
ISA level or instruction reordering but does not want to change the state of the code which
invoked the macro.

Traditional mips assemblers do not support these directives.

Chapter 8: Machine Dependent Features 121

8.17 picoJava Dependent Features

8.17.1 Options

as has two addiitional command-line options for the picoJava architecture.

-ml This option selects little endian data output.

-mb This option selects big endian data output.

122 Using as

8.18 Hitachi SH Dependent Features

8.18.1 Options

as has no additional command-line options for the Hitachi SH family.

8.18.2 Syntax

8.18.2.1 Special Characters

‘!’ is the line comment character.
You can use ‘;’ instead of a newline to separate statements.
Since ‘$’ has no special meaning, you may use it in symbol names.

8.18.2.2 Register Names

You can use the predefined symbols ‘r0’, ‘r1’, ‘r2’, ‘r3’, ‘r4’, ‘r5’, ‘r6’, ‘r7’, ‘r8’, ‘r9’,
‘r10’, ‘r11’, ‘r12’, ‘r13’, ‘r14’, and ‘r15’ to refer to the SH registers.

The SH also has these control registers:

pr procedure register (holds return address)

pc program counter

mach
macl high and low multiply accumulator registers

sr status register

gbr global base register

vbr vector base register (for interrupt vectors)

8.18.2.3 Addressing Modes

as understands the following addressing modes for the SH. Rn in the following refers to
any of the numbered registers, but not the control registers.

Rn Register direct

@Rn Register indirect

@-Rn Register indirect with pre-decrement

Chapter 8: Machine Dependent Features 123

@Rn+ Register indirect with post-increment

@(disp, Rn)
Register indirect with displacement

@(R0, Rn) Register indexed

@(disp, GBR)
GBR offset

@(R0, GBR)
GBR indexed

addr
@(disp, PC)

PC relative address (for branch or for addressing memory). The as implemen-
tation allows you to use the simpler form addr anywhere a PC relative address
is called for; the alternate form is supported for compatibility with other as-
semblers.

#imm Immediate data

8.18.3 Floating Point

The SH family has no hardware floating point, but the .float directive generates ieee

floating-point numbers for compatibility with other development tools.

8.18.4 SH Machine Directives

uaword
ualong as will issue a warning when a misaligned .word or .long directive is used.

You may use .uaword or .ualong to indicate that the value is intentionally
misaligned.

8.18.5 Opcodes

For detailed information on the SH machine instruction set, see SH-Microcomputer
User’s Manual (Hitachi Micro Systems, Inc.).

as implements all the standard SH opcodes. No additional pseudo-instructions are
needed on this family. Note, however, that because as supports a simpler form of PC-
relative addressing, you may simply write (for example)

mov.l bar,r0

where other assemblers might require an explicit displacement to bar from the program
counter:

mov.l @(disp, PC)

124 Using as

8.19 SPARC Dependent Features

8.19.1 Options

The SPARC chip family includes several successive levels, using the same core instruction
set, but including a few additional instructions at each level. There are exceptions to this
however. For details on what instructions each variant supports, please see the chip’s
architecture reference manual.

By default, as assumes the core instruction set (SPARC v6), but “bumps” the archi-
tecture level as needed: it switches to successively higher architectures as it encounters
instructions that only exist in the higher levels.

If not configured for SPARC v9 (sparc64-*-*) GAS will not bump passed sparclite by
default, an option must be passed to enable the v9 instructions.

GAS treats sparclite as being compatible with v8, unless an architecture is explicitly
requested. SPARC v9 is always incompatible with sparclite.

-Av6 | -Av7 | -Av8 | -Asparclet | -Asparclite
-Av8plus | -Av8plusa | -Av9 | -Av9a

Use one of the ‘-A’ options to select one of the SPARC architectures explicitly.
If you select an architecture explicitly, as reports a fatal error if it encounters
an instruction or feature requiring an incompatible or higher level.
‘-Av8plus’ and ‘-Av8plusa’ select a 32 bit environment.
‘-Av9’ and ‘-Av9a’ select a 64 bit environment and are not available unless GAS
is explicitly configured with 64 bit environment support.
‘-Av8plusa’ and ‘-Av9a’ enable the SPARC V9 instruction set with Ultra-
SPARC extensions.

-xarch=v8plus | -xarch=v8plusa
For compatibility with the Solaris v9 assembler. These options are equivalent
to -Av8plus and -Av8plusa, respectively.

-bump Warn whenever it is necessary to switch to another level. If an architecture level
is explicitly requested, GAS will not issue warnings until that level is reached,
and will then bump the level as required (except between incompatible levels).

-32 | -64 Select the word size, either 32 bits or 64 bits. These options are only available
with the ELF object file format, and require that the necessary BFD support
has been included.

8.19.2 Enforcing aligned data

SPARC GAS normally permits data to be misaligned. For example, it permits the
.long pseudo-op to be used on a byte boundary. However, the native SunOS and Solaris
assemblers issue an error when they see misaligned data.

Chapter 8: Machine Dependent Features 125

You can use the --enforce-aligned-data option to make SPARC GAS also issue an
error about misaligned data, just as the SunOS and Solaris assemblers do.

The --enforce-aligned-data option is not the default because gcc issues misaligned
data pseudo-ops when it initializes certain packed data structures (structures defined using
the packed attribute). You may have to assemble with GAS in order to initialize packed
data structures in your own code.

8.19.3 Floating Point

The Sparc uses ieee floating-point numbers.

8.19.4 Sparc Machine Directives

The Sparc version of as supports the following additional machine directives:

.align This must be followed by the desired alignment in bytes.

.common This must be followed by a symbol name, a positive number, and "bss". This
behaves somewhat like .comm, but the syntax is different.

.half This is functionally identical to .short.

.nword On the Sparc, the .nword directive produces native word sized value, ie. if as-
sembling with -32 it is equivalent to .word, if assembling with -64 it is equivalent
to .xword.

.proc This directive is ignored. Any text following it on the same line is also ignored.

.register
This directive declares use of a global application or system register. It must
be followed by a register name %g2, %g3, %g6 or %g7, comma and the symbol
name for that register. If symbol name is #scratch, it is a scratch register, if it
is #ignore, it just surpresses any errors about using undeclared global register,
but does not emit any information about it into the object file. This can be
useful e.g. if you save the register before use and restore it after.

.reserve This must be followed by a symbol name, a positive number, and "bss". This
behaves somewhat like .lcomm, but the syntax is different.

.seg This must be followed by "text", "data", or "data1". It behaves like .text,
.data, or .data 1.

.skip This is functionally identical to the .space directive.

.word On the Sparc, the .word directive produces 32 bit values, instead of the 16 bit
values it produces on many other machines.

.xword On the Sparc V9 processor, the .xword directive produces 64 bit values.

126 Using as

8.20 Z8000 Dependent Features

The Z8000 as supports both members of the Z8000 family: the unsegmented Z8002, with
16 bit addresses, and the segmented Z8001 with 24 bit addresses.

When the assembler is in unsegmented mode (specified with the unsegm directive), an
address takes up one word (16 bit) sized register. When the assembler is in segmented
mode (specified with the segm directive), a 24-bit address takes up a long (32 bit) register.
See Section 8.20.3 [Assembler Directives for the Z8000], page 127, for a list of other Z8000
specific assembler directives.

8.20.1 Options

as has no additional command-line options for the Zilog Z8000 family.

8.20.2 Syntax

8.20.2.1 Special Characters

‘!’ is the line comment character.

You can use ‘;’ instead of a newline to separate statements.

8.20.2.2 Register Names

The Z8000 has sixteen 16 bit registers, numbered 0 to 15. You can refer to different
sized groups of registers by register number, with the prefix ‘r’ for 16 bit registers, ‘rr’ for
32 bit registers and ‘rq’ for 64 bit registers. You can also refer to the contents of the first
eight (of the sixteen 16 bit registers) by bytes. They are named ‘rnh’ and ‘rnl’.

byte registers
r0l r0h r1h r1l r2h r2l r3h r3l
r4h r4l r5h r5l r6h r6l r7h r7l

word registers
r0 r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11 r12 r13 r14 r15

long word registers
rr0 rr2 rr4 rr6 rr8 rr10 rr12 rr14

quad word registers
rq0 rq4 rq8 rq12

Chapter 8: Machine Dependent Features 127

8.20.2.3 Addressing Modes

as understands the following addressing modes for the Z8000:

rn Register direct

@rn Indirect register

addr Direct: the 16 bit or 24 bit address (depending on whether the assembler is in
segmented or unsegmented mode) of the operand is in the instruction.

address(rn)
Indexed: the 16 or 24 bit address is added to the 16 bit register to produce the
final address in memory of the operand.

rn(#imm) Base Address: the 16 or 24 bit register is added to the 16 bit sign extended
immediate displacement to produce the final address in memory of the operand.

rn(rm) Base Index: the 16 or 24 bit register rn is added to the sign extended 16 bit
index register rm to produce the final address in memory of the operand.

#xx Immediate data xx.

8.20.3 Assembler Directives for the Z8000

The Z8000 port of as includes these additional assembler directives, for compatibility
with other Z8000 assemblers. As shown, these do not begin with ‘.’ (unlike the ordinary as
directives).

segm Generates code for the segmented Z8001.

unsegm Generates code for the unsegmented Z8002.

name Synonym for .file

global Synonym for .global

wval Synonym for .word

lval Synonym for .long

bval Synonym for .byte

sval Assemble a string. sval expects one string literal, delimited by single
quotes. It assembles each byte of the string into consecutive addresses.
You can use the escape sequence ‘%xx’ (where xx represents a two-digit
hexadecimal number) to represent the character whose ascii value is xx.
Use this feature to describe single quote and other characters that may
not appear in string literals as themselves. For example, the C statement
‘char *a = "he said \"it’s 50% off\"";’ is represented in Z8000 assembly
language (shown with the assembler output in hex at the left) as

128 Using as

68652073 sval ’he said %22it%27s 50%25 off%22%00’
61696420
22697427
73203530
25206F66
662200

rsect synonym for .section

block synonym for .space

even special case of .align; aligns output to even byte boundary.

8.20.4 Opcodes

For detailed information on the Z8000 machine instruction set, see Z8000 Technical
Manual.

8.21 VAX Dependent Features

8.21.1 VAX Command-Line Options

The Vax version of as accepts any of the following options, gives a warning message
that the option was ignored and proceeds. These options are for compatibility with scripts
designed for other people’s assemblers.

-D (Debug)
-S (Symbol Table)
-T (Token Trace)

These are obsolete options used to debug old assemblers.

-d (Displacement size for JUMPs)
This option expects a number following the ‘-d’. Like options that expect file-
names, the number may immediately follow the ‘-d’ (old standard) or constitute
the whole of the command line argument that follows ‘-d’ (gnu standard).

-V (Virtualize Interpass Temporary File)
Some other assemblers use a temporary file. This option commanded them to
keep the information in active memory rather than in a disk file. as always
does this, so this option is redundant.

-J (JUMPify Longer Branches)
Many 32-bit computers permit a variety of branch instructions to do the same
job. Some of these instructions are short (and fast) but have a limited range;
others are long (and slow) but can branch anywhere in virtual memory. Often
there are 3 flavors of branch: short, medium and long. Some other assemblers

Chapter 8: Machine Dependent Features 129

would emit short and medium branches, unless told by this option to emit short
and long branches.

-t (Temporary File Directory)
Some other assemblers may use a temporary file, and this option takes a filename
being the directory to site the temporary file. Since as does not use a temporary
disk file, this option makes no difference. ‘-t’ needs exactly one filename.

The Vax version of the assembler accepts additional options when compiled for VMS:

‘-h n’ External symbol or section (used for global variables) names are not case sensi-
tive on VAX/VMS and always mapped to upper case. This is contrary to the C
language definition which explicitly distinguishes upper and lower case. To im-
plement a standard conforming C compiler, names must be changed (mapped)
to preserve the case information. The default mapping is to convert all lower
case characters to uppercase and adding an underscore followed by a 6 digit
hex value, representing a 24 digit binary value. The one digits in the binary
value represent which characters are uppercase in the original symbol name.
The ‘-h n’ option determines how we map names. This takes several values.
No ‘-h’ switch at all allows case hacking as described above. A value of zero
(‘-h0’) implies names should be upper case, and inhibits the case hack. A value
of 2 (‘-h2’) implies names should be all lower case, with no case hack. A value
of 3 (‘-h3’) implies that case should be preserved. The value 1 is unused. The
-H option directs as to display every mapped symbol during assembly.
Symbols whose names include a dollar sign ‘$’ are exceptions to the general
name mapping. These symbols are normally only used to reference VMS library
names. Such symbols are always mapped to upper case.

‘-+’ The ‘-+’ option causes as to truncate any symbol name larger than 31 char-
acters. The ‘-+’ option also prevents some code following the ‘_main’ symbol
normally added to make the object file compatible with Vax-11 "C".

‘-1’ This option is ignored for backward compatibility with as version 1.x.

‘-H’ The ‘-H’ option causes as to print every symbol which was changed by case
mapping.

8.21.2 VAX Floating Point

Conversion of flonums to floating point is correct, and compatible with previous as-
semblers. Rounding is towards zero if the remainder is exactly half the least significant
bit.

D, F, G and H floating point formats are understood.
Immediate floating literals (e.g. ‘S‘$6.9’) are rendered correctly. Again, rounding is

towards zero in the boundary case.
The .float directive produces f format numbers. The .double directive produces d

format numbers.

130 Using as

8.21.3 Vax Machine Directives

The Vax version of the assembler supports four directives for generating Vax floating
point constants. They are described in the table below.

.dfloat This expects zero or more flonums, separated by commas, and assembles Vax
d format 64-bit floating point constants.

.ffloat This expects zero or more flonums, separated by commas, and assembles Vax
f format 32-bit floating point constants.

.gfloat This expects zero or more flonums, separated by commas, and assembles Vax
g format 64-bit floating point constants.

.hfloat This expects zero or more flonums, separated by commas, and assembles Vax
h format 128-bit floating point constants.

8.21.4 VAX Opcodes

All DEC mnemonics are supported. Beware that case... instructions have exactly 3
operands. The dispatch table that follows the case... instruction should be made with
.word statements. This is compatible with all unix assemblers we know of.

8.21.5 VAX Branch Improvement

Certain pseudo opcodes are permitted. They are for branch instructions. They expand
to the shortest branch instruction that reaches the target. Generally these mnemonics are
made by substituting ‘j’ for ‘b’ at the start of a DEC mnemonic. This feature is included
both for compatibility and to help compilers. If you do not need this feature, avoid these
opcodes. Here are the mnemonics, and the code they can expand into.

jbsb ‘Jsb’ is already an instruction mnemonic, so we chose ‘jbsb’.

(byte displacement)
bsbb ...

(word displacement)
bsbw ...

(long displacement)
jsb ...

jbr
jr Unconditional branch.

(byte displacement)
brb ...

(word displacement)
brw ...

Chapter 8: Machine Dependent Features 131

(long displacement)
jmp ...

jCOND COND may be any one of the conditional branches neq, nequ, eql, eqlu, gtr,
geq, lss, gtru, lequ, vc, vs, gequ, cc, lssu, cs. COND may also be one of
the bit tests bs, bc, bss, bcs, bsc, bcc, bssi, bcci, lbs, lbc. NOTCOND is
the opposite condition to COND.

(byte displacement)
bCOND ...

(word displacement)
bNOTCOND foo ; brw ... ; foo:

(long displacement)
bNOTCOND foo ; jmp ... ; foo:

jacbX X may be one of b d f g h l w.

(word displacement)
OPCODE ...

(long displacement)
OPCODE ..., foo ;
brb bar ;
foo: jmp ... ;
bar:

jaobYYY YYY may be one of lss leq.

jsobZZZ ZZZ may be one of geq gtr.

(byte displacement)
OPCODE ...

(word displacement)
OPCODE ..., foo ;
brb bar ;
foo: brw destination ;
bar:

(long displacement)
OPCODE ..., foo ;
brb bar ;
foo: jmp destination ;
bar:

aobleq
aoblss
sobgeq
sobgtr

(byte displacement)
OPCODE ...

(word displacement)

132 Using as

OPCODE ..., foo ;
brb bar ;
foo: brw destination ;
bar:

(long displacement)
OPCODE ..., foo ;
brb bar ;
foo: jmp destination ;
bar:

8.21.6 VAX Operands

The immediate character is ‘$’ for Unix compatibility, not ‘#’ as DEC writes it.

The indirect character is ‘*’ for Unix compatibility, not ‘@’ as DEC writes it.

The displacement sizing character is ‘‘’ (an accent grave) for Unix compatibility, not ‘^’
as DEC writes it. The letter preceding ‘‘’ may have either case. ‘G’ is not understood, but
all other letters (b i l s w) are understood.

Register names understood are r0 r1 r2 ... r15 ap fp sp pc. Upper and lower case
letters are equivalent.

For instance
tstb *w‘$4(r5)

Any expression is permitted in an operand. Operands are comma separated.

8.21.7 Not Supported on VAX

Vax bit fields can not be assembled with as. Someone can add the required code if they
really need it.

8.22 v850 Dependent Features

8.22.1 Options

as supports the following additional command-line options for the V850 processor family:

-wsigned_overflow
Causes warnings to be produced when signed immediate values overflow the
space available for then within their opcodes. By default this option is disabled
as it is possible to receive spurious warnings due to using exact bit patterns as
immediate constants.

Chapter 8: Machine Dependent Features 133

-wunsigned_overflow
Causes warnings to be produced when unsigned immediate values overflow the
space available for then within their opcodes. By default this option is disabled
as it is possible to receive spurious warnings due to using exact bit patterns as
immediate constants.

-mv850 Specifies that the assembled code should be marked as being targeted at the
V850 processor. This allows the linker to detect attempts to link such code
with code assembled for other processors.

-mv850e Specifies that the assembled code should be marked as being targeted at the
V850E processor. This allows the linker to detect attempts to link such code
with code assembled for other processors.

-mv850any
Specifies that the assembled code should be marked as being targeted at the
V850 processor but support instructions that are specific to the extended vari-
ants of the process. This allows the production of binaries that contain target
specific code, but which are also intended to be used in a generic fashion. For
example libgcc.a contains generic routines used by the code produced by GCC
for all versions of the v850 architecture, together with support routines only
used by the V850E architecture.

8.22.2 Syntax

8.22.2.1 Special Characters

‘#’ is the line comment character.

8.22.2.2 Register Names

as supports the following names for registers:

general register 0
r0, zero

general register 1
r1

general register 2
r2, hp

general register 3
r3, sp

general register 4
r4, gp

134 Using as

general register 5
r5, tp

general register 6
r6

general register 7
r7

general register 8
r8

general register 9
r9

general register 10
r10

general register 11
r11

general register 12
r12

general register 13
r13

general register 14
r14

general register 15
r15

general register 16
r16

general register 17
r17

general register 18
r18

general register 19
r19

general register 20
r20

general register 21
r21

general register 22
r22

general register 23
r23

Chapter 8: Machine Dependent Features 135

general register 24
r24

general register 25
r25

general register 26
r26

general register 27
r27

general register 28
r28

general register 29
r29

general register 30
r30, ep

general register 31
r31, lp

system register 0
eipc

system register 1
eipsw

system register 2
fepc

system register 3
fepsw

system register 4
ecr

system register 5
psw

system register 16
ctpc

system register 17
ctpsw

system register 18
dbpc

system register 19
dbpsw

system register 20
ctbp

136 Using as

8.22.3 Floating Point

The V850 family uses ieee floating-point numbers.

8.22.4 V850 Machine Directives

.offset <expression>
Moves the offset into the current section to the specified amount.

.section "name", <type>
This is an extension to the standard .section directive. It sets the current section
to be <type> and creates an alias for this section called "name".

.v850 Specifies that the assembled code should be marked as being targeted at the
V850 processor. This allows the linker to detect attempts to link such code
with code assembled for other processors.

.v850e Specifies that the assembled code should be marked as being targeted at the
V850E processor. This allows the linker to detect attempts to link such code
with code assembled for other processors.

8.22.5 Opcodes

as implements all the standard V850 opcodes.
as also implements the following pseudo ops:

hi0() Computes the higher 16 bits of the given expression and stores it into the
immediate operand field of the given instruction. For example:
‘mulhi hi0(here - there), r5, r6’
computes the difference between the address of labels ’here’ and ’there’, takes
the upper 16 bits of this difference, shifts it down 16 bits and then mutliplies
it by the lower 16 bits in register 5, putting the result into register 6.

lo() Computes the lower 16 bits of the given expression and stores it into the im-
mediate operand field of the given instruction. For example:
‘addi lo(here - there), r5, r6’
computes the difference between the address of labels ’here’ and ’there’, takes
the lower 16 bits of this difference and adds it to register 5, putting the result
into register 6.

hi() Computes the higher 16 bits of the given expression and then adds the value
of the most significant bit of the lower 16 bits of the expression and stores the
result into the immediate operand field of the given instruction. For example
the following code can be used to compute the address of the label ’here’ and
store it into register 6:

Chapter 8: Machine Dependent Features 137

‘movhi hi(here), r0, r6’ ‘movea lo(here), r6, r6’
The reason for this special behaviour is that movea performs a sign exten-
tion on its immediate operand. So for example if the address of ’here’ was
0xFFFFFFFF then without the special behaviour of the hi() pseudo-op the
movhi instruction would put 0xFFFF0000 into r6, then the movea instruc-
tion would takes its immediate operand, 0xFFFF, sign extend it to 32 bits,
0xFFFFFFFF, and then add it into r6 giving 0xFFFEFFFF which is wrong
(the fifth nibble is E). With the hi() pseudo op adding in the top bit of the
lo() pseudo op, the movhi instruction actually stores 0 into r6 (0xFFFF + 1 =
0x0000), so that the movea instruction stores 0xFFFFFFFF into r6 - the right
value.

hilo() Computes the 32 bit value of the given expression and stores it into the imme-
diate operand field of the given instruction (which must be a mov instruction).
For example:
‘mov hilo(here), r6’
computes the absolute address of label ’here’ and puts the result into register
6.

sdaoff() Computes the offset of the named variable from the start of the Small Data
Area (whoes address is held in register 4, the GP register) and stores the result
as a 16 bit signed value in the immediate operand field of the given instruction.
For example:
‘ld.w sdaoff(_a_variable)[gp],r6’
loads the contents of the location pointed to by the label ’ a variable’ into
register 6, provided that the label is located somewhere within +/- 32K of the
address held in the GP register. [Note the linker assumes that the GP register
contains a fixed address set to the address of the label called ’ gp’. This can
either be set up automatically by the linker, or specifically set by using the
‘--defsym __gp=<value>’ command line option].

tdaoff() Computes the offset of the named variable from the start of the Tiny Data Area
(whoes address is held in register 30, the EP register) and stores the result as
a 4,5, 7 or 8 bit unsigned value in the immediate operand field of the given
instruction. For example:
‘sld.w tdaoff(_a_variable)[ep],r6’
loads the contents of the location pointed to by the label ’ a variable’ into
register 6, provided that the label is located somewhere within +256 bytes of
the address held in the EP register. [Note the linker assumes that the EP
register contains a fixed address set to the address of the label called ’ ep’.
This can either be set up automatically by the linker, or specifically set by
using the ‘--defsym __ep=<value>’ command line option].

zdaoff() Computes the offset of the named variable from address 0 and stores the result
as a 16 bit signed value in the immediate operand field of the given instruction.
For example:
‘movea zdaoff(_a_variable),zero,r6’

138 Using as

puts the address of the label ’ a variable’ into register 6, assuming that the
label is somewhere within the first 32K of memory. (Strictly speaking it also
possible to access the last 32K of memory as well, as the offsets are signed).

ctoff() Computes the offset of the named variable from the start of the Call Table
Area (whoes address is helg in system register 20, the CTBP register) and
stores the result a 6 or 16 bit unsigned value in the immediate field of then
given instruction or piece of data. For example:
‘callt ctoff(table_func1)’
will put the call the function whoes address is held in the call table at the
location labeled ’table func1’.

For information on the V850 instruction set, see V850 Family 32-/16-Bit single-Chip
Microcontroller Architecture Manual from NEC. Ltd.

Chapter 9: Reporting Bugs 139

9 Reporting Bugs

Your bug reports play an essential role in making as reliable.

Reporting a bug may help you by bringing a solution to your problem, or it may not.
But in any case the principal function of a bug report is to help the entire community
by making the next version of as work better. Bug reports are your contribution to the
maintenance of as.

In order for a bug report to serve its purpose, you must include the information that
enables us to fix the bug.

9.1 Have you found a bug?

If you are not sure whether you have found a bug, here are some guidelines:

• If the assembler gets a fatal signal, for any input whatever, that is a as bug. Reliable
assemblers never crash.

• If as produces an error message for valid input, that is a bug.
• If as does not produce an error message for invalid input, that is a bug. However, you

should note that your idea of “invalid input” might be our idea of “an extension” or
“support for traditional practice”.

• If you are an experienced user of assemblers, your suggestions for improvement of as
are welcome in any case.

9.2 How to report bugs

A number of companies and individuals offer support for gnu products. If you obtained
as from a support organization, we recommend you contact that organization first.

You can find contact information for many support companies and individuals in the file
‘etc/SERVICE’ in the gnu Emacs distribution.

In any event, we also recommend that you send bug reports for as to ‘bug-binutils@gnu.org’.

The fundamental principle of reporting bugs usefully is this: report all the facts. If you
are not sure whether to state a fact or leave it out, state it!

Often people omit facts because they think they know what causes the problem and
assume that some details do not matter. Thus, you might assume that the name of a
symbol you use in an example does not matter. Well, probably it does not, but one cannot
be sure. Perhaps the bug is a stray memory reference which happens to fetch from the
location where that name is stored in memory; perhaps, if the name were different, the
contents of that location would fool the assembler into doing the right thing despite the
bug. Play it safe and give a specific, complete example. That is the easiest thing for you
to do, and the most helpful.

140 Using as

Keep in mind that the purpose of a bug report is to enable us to fix the bug if it is new
to us. Therefore, always write your bug reports on the assumption that the bug has not
been reported previously.

Sometimes people give a few sketchy facts and ask, “Does this ring a bell?” Those bug
reports are useless, and we urge everyone to refuse to respond to them except to chide the
sender to report bugs properly.

To enable us to fix the bug, you should include all these things:
• The version of as. as announces it if you start it with the ‘--version’ argument.

Without this, we will not know whether there is any point in looking for the bug in the
current version of as.

• Any patches you may have applied to the as source.
• The type of machine you are using, and the operating system name and version number.
• What compiler (and its version) was used to compile as—e.g. “gcc-2.7”.
• The command arguments you gave the assembler to assemble your example and observe

the bug. To guarantee you will not omit something important, list them all. A copy
of the Makefile (or the output from make) is sufficient.
If we were to try to guess the arguments, we would probably guess wrong and then we
might not encounter the bug.

• A complete input file that will reproduce the bug. If the bug is observed when the
assembler is invoked via a compiler, send the assembler source, not the high level
language source. Most compilers will produce the assembler source when run with the
‘-S’ option. If you are using gcc, use the options ‘-v --save-temps’; this will save the
assembler source in a file with an extension of ‘.s’, and also show you exactly how as
is being run.

• A description of what behavior you observe that you believe is incorrect. For example,
“It gets a fatal signal.”
Of course, if the bug is that as gets a fatal signal, then we will certainly notice it. But
if the bug is incorrect output, we might not notice unless it is glaringly wrong. You
might as well not give us a chance to make a mistake.
Even if the problem you experience is a fatal signal, you should still say so explicitly.
Suppose something strange is going on, such as, your copy of as is out of synch, or you
have encountered a bug in the C library on your system. (This has happened!) Your
copy might crash and ours would not. If you told us to expect a crash, then when ours
fails to crash, we would know that the bug was not happening for us. If you had not
told us to expect a crash, then we would not be able to draw any conclusion from our
observations.

• If you wish to suggest changes to the as source, send us context diffs, as generated by
diff with the ‘-u’, ‘-c’, or ‘-p’ option. Always send diffs from the old file to the new
file. If you even discuss something in the as source, refer to it by context, not by line
number.
The line numbers in our development sources will not match those in your sources.
Your line numbers would convey no useful information to us.

Here are some things that are not necessary:

Chapter 9: Reporting Bugs 141

• A description of the envelope of the bug.
Often people who encounter a bug spend a lot of time investigating which changes to
the input file will make the bug go away and which changes will not affect it.
This is often time consuming and not very useful, because the way we will find the
bug is by running a single example under the debugger with breakpoints, not by pure
deduction from a series of examples. We recommend that you save your time for
something else.
Of course, if you can find a simpler example to report instead of the original one, that
is a convenience for us. Errors in the output will be easier to spot, running under the
debugger will take less time, and so on.
However, simplification is not vital; if you do not want to do this, report the bug
anyway and send us the entire test case you used.

• A patch for the bug.
A patch for the bug does help us if it is a good one. But do not omit the necessary
information, such as the test case, on the assumption that a patch is all we need. We
might see problems with your patch and decide to fix the problem another way, or we
might not understand it at all.
Sometimes with a program as complicated as as it is very hard to construct an example
that will make the program follow a certain path through the code. If you do not send
us the example, we will not be able to construct one, so we will not be able to verify
that the bug is fixed.
And if we cannot understand what bug you are trying to fix, or why your patch should
be an improvement, we will not install it. A test case will help us to understand.

• A guess about what the bug is or what it depends on.
Such guesses are usually wrong. Even we cannot guess right about such things without
first using the debugger to find the facts.

142 Using as

Chapter 10: Acknowledgements 143

10 Acknowledgements

If you have contributed to as and your name isn’t listed here, it is not meant as a slight.
We just don’t know about it. Send mail to the maintainer, and we’ll correct the situation.
Currently the maintainer is Ken Raeburn (email address raeburn@cygnus.com).

Dean Elsner wrote the original gnu assembler for the VAX.1

Jay Fenlason maintained GAS for a while, adding support for GDB-specific debug infor-
mation and the 68k series machines, most of the preprocessing pass, and extensive changes
in ‘messages.c’, ‘input-file.c’, ‘write.c’.

K. Richard Pixley maintained GAS for a while, adding various enhancements and many
bug fixes, including merging support for several processors, breaking GAS up to handle
multiple object file format back ends (including heavy rewrite, testing, an integration of
the coff and b.out back ends), adding configuration including heavy testing and verifica-
tion of cross assemblers and file splits and renaming, converted GAS to strictly ANSI C
including full prototypes, added support for m680[34]0 and cpu32, did considerable work
on i960 including a COFF port (including considerable amounts of reverse engineering),
a SPARC opcode file rewrite, DECstation, rs6000, and hp300hpux host ports, updated
“know” assertions and made them work, much other reorganization, cleanup, and lint.

Ken Raeburn wrote the high-level BFD interface code to replace most of the code in
format-specific I/O modules.

The original VMS support was contributed by David L. Kashtan. Eric Youngdale has
done much work with it since.

The Intel 80386 machine description was written by Eliot Dresselhaus.
Minh Tran-Le at IntelliCorp contributed some AIX 386 support.
The Motorola 88k machine description was contributed by Devon Bowen of Buffalo

University and Torbjorn Granlund of the Swedish Institute of Computer Science.
Keith Knowles at the Open Software Foundation wrote the original MIPS back end

(‘tc-mips.c’, ‘tc-mips.h’), and contributed Rose format support (which hasn’t been
merged in yet). Ralph Campbell worked with the MIPS code to support a.out format.

Support for the Zilog Z8k and Hitachi H8/300 and H8/500 processors (tc-z8k, tc-h8300,
tc-h8500), and IEEE 695 object file format (obj-ieee), was written by Steve Chamberlain
of Cygnus Support. Steve also modified the COFF back end to use BFD for some low-level
operations, for use with the H8/300 and AMD 29k targets.

John Gilmore built the AMD 29000 support, added .include support, and simplified
the configuration of which versions accept which directives. He updated the 68k machine
description so that Motorola’s opcodes always produced fixed-size instructions (e.g. jsr),
while synthetic instructions remained shrinkable (jbsr). John fixed many bugs, including
true tested cross-compilation support, and one bug in relaxation that took a week and
required the proverbial one-bit fix.

Ian Lance Taylor of Cygnus Support merged the Motorola and MIT syntax for the 68k,
completed support for some COFF targets (68k, i386 SVR3, and SCO Unix), added support

1 Any more details?

144 Using as

for MIPS ECOFF and ELF targets, wrote the initial RS/6000 and PowerPC assembler, and
made a few other minor patches.

Steve Chamberlain made as able to generate listings.
Hewlett-Packard contributed support for the HP9000/300.
Jeff Law wrote GAS and BFD support for the native HPPA object format (SOM) along

with a fairly extensive HPPA testsuite (for both SOM and ELF object formats). This
work was supported by both the Center for Software Science at the University of Utah and
Cygnus Support.

Support for ELF format files has been worked on by Mark Eichin of Cygnus Support
(original, incomplete implementation for SPARC), Pete Hoogenboom and Jeff Law at the
University of Utah (HPPA mainly), Michael Meissner of the Open Software Foundation
(i386 mainly), and Ken Raeburn of Cygnus Support (sparc, and some initial 64-bit support).

Linas Vepstas added GAS support for the ESA/390 "IBM 370" architecture.
Richard Henderson rewrote the Alpha assembler. Klaus Kaempf wrote GAS and BFD

support for openVMS/Alpha.
Timothy Wall, Michael Hayes, and Greg Smart contributed to the various tic* flavors.
Several engineers at Cygnus Support have also provided many small bug fixes and con-

figuration enhancements.
Many others have contributed large or small bugfixes and enhancements. If you have

contributed significant work and are not mentioned on this list, and want to be, let us know.
Some of the history has been lost; we are not intentionally leaving anyone out.

Chapter 11: GNU Free Documentation License 145

11 GNU Free Documentation License

GNU Free Documentation License
Version 1.1, March 2000
Copyright (C) 2000 Free Software Foundation, Inc. 59 Temple Place, Suite 330, Boston,

MA 02111-1307 USA
Everyone is permitted to copy and distribute verbatim copies of this license document,

but changing it is not allowed.
0. PREAMBLE
The purpose of this License is to make a manual, textbook, or other written docu-

ment "free" in the sense of freedom: to assure everyone the effective freedom to copy and
redistribute it, with or without modifying it, either commercially or noncommercially. Sec-
ondarily, this License preserves for the author and publisher a way to get credit for their
work, while not being considered responsible for modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public License,
which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free
software needs free documentation: a free program should come with manuals providing the
same freedoms that the software does. But this License is not limited to software manuals;
it can be used for any textual work, regardless of subject matter or whether it is published
as a printed book. We recommend this License principally for works whose purpose is
instruction or reference.

1. APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work that contains a notice placed by

the copyright holder saying it can be distributed under the terms of this License. The
"Document", below, refers to any such manual or work. Any member of the public is a
licensee, and is addressed as "you".

A "Modified Version" of the Document means any work containing the Document or a
portion of it, either copied verbatim, or with modifications and/or translated into another
language.

A "Secondary Section" is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document to
the Document’s overall subject (or to related matters) and contains nothing that could fall
directly within that overall subject. (For example, if the Document is in part a textbook
of mathematics, a Secondary Section may not explain any mathematics.) The relationship
could be a matter of historical connection with the subject or with related matters, or of
legal, commercial, philosophical, ethical or political position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released
under this License.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under this
License.

146 Using as

A "Transparent" copy of the Document means a machine-readable copy, represented in
a format whose specification is available to the general public, whose contents can be viewed
and edited directly and straightforwardly with generic text editors or (for images composed
of pixels) generic paint programs or (for drawings) some widely available drawing editor,
and that is suitable for input to text formatters or for automatic translation to a variety of
formats suitable for input to text formatters. A copy made in an otherwise Transparent file
format whose markup has been designed to thwart or discourage subsequent modification
by readers is not Transparent. A copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without
markup, Texinfo input format, LaTeX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML designed for human modification.
Opaque formats include PostScript, PDF, proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or processing
tools are not generally available, and the machine-generated HTML produced by some
word processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the title
page. For works in formats which do not have any title page as such, "Title Page" means
the text near the most prominent appearance of the work’s title, preceding the beginning
of the body of the text.

2. VERBATIM COPYING
You may copy and distribute the Document in any medium, either commercially or

noncommercially, provided that this License, the copyright notices, and the license notice
saying this License applies to the Document are reproduced in all copies, and that you
add no other conditions whatsoever to those of this License. You may not use technical
measures to obstruct or control the reading or further copying of the copies you make or
distribute. However, you may accept compensation in exchange for copies. If you distribute
a large enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY
If you publish printed copies of the Document numbering more than 100, and the Doc-

ument’s license notice requires Cover Texts, you must enclose the copies in covers that
carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and
Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you
as the publisher of these copies. The front cover must present the full title with all words
of the title equally prominent and visible. You may add other material on the covers in
addition. Copying with changes limited to the covers, as long as they preserve the title of
the Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the rest
onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque

Chapter 11: GNU Free Documentation License 147

copy, or state in or with each Opaque copy a publicly-accessible computer-network location
containing a complete Transparent copy of the Document, free of added material, which
the general network-using public has access to download anonymously at no charge using
public-standard network protocols. If you use the latter option, you must take reasonably
prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that
this Transparent copy will remain thus accessible at the stated location until at least one
year after the last time you distribute an Opaque copy (directly or through your agents or
retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you with
an updated version of the Document.

4. MODIFICATIONS
You may copy and distribute a Modified Version of the Document under the conditions

of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of it. In
addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any, be listed
in the History section of the Document). You may use the same title as a previous version
if the original publisher of that version gives permission. B. List on the Title Page, as
authors, one or more persons or entities responsible for authorship of the modifications in
the Modified Version, together with at least five of the principal authors of the Document
(all of its principal authors, if it has less than five). C. State on the Title page the name
of the publisher of the Modified Version, as the publisher. D. Preserve all the copyright
notices of the Document. E. Add an appropriate copyright notice for your modifications
adjacent to the other copyright notices. F. Include, immediately after the copyright notices,
a license notice giving the public permission to use the Modified Version under the terms
of this License, in the form shown in the Addendum below. G. Preserve in that license
notice the full lists of Invariant Sections and required Cover Texts given in the Document’s
license notice. H. Include an unaltered copy of this License. I. Preserve the section entitled
"History", and its title, and add to it an item stating at least the title, year, new authors,
and publisher of the Modified Version as given on the Title Page. If there is no section
entitled "History" in the Document, create one stating the title, year, authors, and publisher
of the Document as given on its Title Page, then add an item describing the Modified
Version as stated in the previous sentence. J. Preserve the network location, if any, given
in the Document for public access to a Transparent copy of the Document, and likewise
the network locations given in the Document for previous versions it was based on. These
may be placed in the "History" section. You may omit a network location for a work that
was published at least four years before the Document itself, or if the original publisher of
the version it refers to gives permission. K. In any section entitled "Acknowledgements"
or "Dedications", preserve the section’s title, and preserve in the section all the substance
and tone of each of the contributor acknowledgements and/or dedications given therein. L.
Preserve all the Invariant Sections of the Document, unaltered in their text and in their
titles. Section numbers or the equivalent are not considered part of the section titles. M.
Delete any section entitled "Endorsements". Such a section may not be included in the

148 Using as

Modified Version. N. Do not retitle any existing section as "Endorsements" or to conflict
in title with any Invariant Section.

If the Modified Version includes new front-matter sections or appendices that qualify as
Secondary Sections and contain no material copied from the Document, you may at your
option designate some or all of these sections as invariant. To do this, add their titles to
the list of Invariant Sections in the Modified Version’s license notice. These titles must be
distinct from any other section titles.

You may add a section entitled "Endorsements", provided it contains nothing but en-
dorsements of your Modified Version by various parties–for example, statements of peer
review or that the text has been approved by an organization as the authoritative definition
of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be added
by (or through arrangements made by) any one entity. If the Document already includes
a cover text for the same cover, previously added by you or by arrangement made by the
same entity you are acting on behalf of, you may not add another; but you may replace the
old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you include
in the combination all of the Invariant Sections of all of the original documents, unmodified,
and list them all as Invariant Sections of your combined work in its license notice.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment to
the section titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections entitled "History" in the various
original documents, forming one section entitled "History"; likewise combine any sections
entitled "Acknowledgements", and any sections entitled "Dedications". You must delete
all sections entitled "Endorsements."

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various documents
with a single copy that is included in the collection, provided that you follow the rules of
this License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually
under this License, provided you insert a copy of this License into the extracted document,
and follow this License in all other respects regarding verbatim copying of that document.

Chapter 11: GNU Free Documentation License 149

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, does not as a
whole count as a Modified Version of the Document, provided no compilation copyright is
claimed for the compilation. Such a compilation is called an "aggregate", and this License
does not apply to the other self-contained works thus compiled with the Document, on
account of their being thus compiled, if they are not themselves derivative works of the
Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one quarter of the entire aggregate, the Document’s Cover
Texts may be placed on covers that surround only the Document within the aggregate.
Otherwise they must appear on covers around the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of
the Document under the terms of section 4. Replacing Invariant Sections with translations
requires special permission from their copyright holders, but you may include translations of
some or all Invariant Sections in addition to the original versions of these Invariant Sections.
You may include a translation of this License provided that you also include the original
English version of this License. In case of a disagreement between the translation and the
original English version of this License, the original English version will prevail.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or distribute
the Document is void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under this License will not
have their licenses terminated so long as such parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Doc-
umentation License from time to time. Such new versions will be similar in spirit to
the present version, but may differ in detail to address new problems or concerns. See
http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License "or any later version" applies
to it, you have the option of following the terms and conditions either of that specified
version or of any later version that has been published (not as a draft) by the Free Software
Foundation. If the Document does not specify a version number of this License, you may
choose any version ever published (not as a draft) by the Free Software Foundation.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (c) YEAR YOUR NAME.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.1
or any later version published by the Free Software Foundation;

150 Using as

with the Invariant Sections being LIST THEIR TITLES, with the
Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.
A copy of the license is included in the section entitled "GNU
Free Documentation License".

If you have no Invariant Sections, write "with no Invariant Sections" instead of saying
which ones are invariant. If you have no Front-Cover Texts, write "no Front-Cover Texts"
instead of "Front-Cover Texts being LIST"; likewise for Back-Cover Texts.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

Index 151

Index

#
. 18

#APP . 17

#NO_APP . 17

$
$ in symbol names 69, 73, 79, 119

-
-- . 8

‘--32’ option, i386 . 88

‘--32’ option, x86-64 . 88

‘--64’ option, i386 . 88

‘--64’ option, x86-64 . 88

‘--base-size-default-16’ 104

‘--base-size-default-32’ 104

‘--bitwise-or’ option, M680x0 104

–construct-floats . 115

‘--disp-size-default-16’ 104

‘--disp-size-default-32’ 104

--enforce-aligned-data 121

‘--fatal-warnings’ . 15

‘--force-long-branchs’ . 111

‘--generate-example’. 111

--MD . 14

–no-construct-floats . 115

‘--no-warn’ . 15

‘--pcrel’ . 104

‘--print-insn-syntax’ . 111

‘--print-opcodes’ . 111

‘--register-prefix-optional’ option, M680x0

. 104

‘--short-branchs’ . 111

--statistics . 15

‘--strict-direct-mode’ . 111

--traditional-format . 15

‘--warn’ . 15

‘-+’ option, VAX/VMS . 126

‘-1’ option, VAX/VMS . 126

-a . 11

-A options, i960 . 98

-ac . 11

-ad . 11

-ah . 11

-al . 11

-an . 11

-as . 11

-Asparclet . 121

-Asparclite . 121

-Av6 . 121

-Av8 . 121

-Av9 . 121

-Av9a . 121

-b option, i960 . 98

-D . 11

-D, ignored on VAX . 125

-d, VAX option . 125

-EB command line option, ARC 60

-EB command line option, ARM 64

-EB option (MIPS) . 114

-EL command line option, ARC 60

-EL command line option, ARM 65

-EL option (MIPS) . 114

-f . 11

-G option (MIPS) . 114

‘-h’ option, VAX/VMS . 125

‘-H’ option, VAX/VMS . 126

-I path . 12

-J, ignored on VAX . 125

-K . 12

-k command line option, ARM 65

-L . 12

‘-l’ option, M680x0 . 104

-M . 12

‘-m32r’ option, M32R . 102

‘-m32rx’ option, M32RX . 102

‘-m68000’ and related options 105

‘-m68hc11’ . 111

‘-m68hc12’ . 111

-mall command line option, ARM 64

-mapcs command line option, ARM 64

-mapcs-float command line option, ARM 64

-mapcs-reentrant command line option, ARM

. 64

-marc[5|6|7|8] command line option, ARC . . . 60

-marm command line option, ARM 64

-marmv command line option, ARM 64

-matpcs command line option, ARM 64

-mfpa command line option, ARM 64

-mfpe-old command line option, ARM 64

-mno-fpu command line option, ARM 64

152 Using as

-moabi command line option, ARM 65

-mthumb command line option, ARM 64

-mthumb-interwork command line option, ARM

. 64

-mv850 command line option, V850 129

-mv850any command line option, V850 129

-mv850e command line option, V850 129

-no-relax option, i960 . 99

‘-no-warn-explicit-parallel-conflicts’ option,

M32RX . 102

-nocpp ignored (MIPS) . 115

-o . 14

-R . 14

-S, ignored on VAX . 125

-t, ignored on VAX . 125

-T, ignored on VAX . 125

-v . 15

-V, redundant on VAX . 125

-version . 15

‘-W’ . 15

‘-warn-explicit-parallel-conflicts’ option,

M32RX . 102

‘-Wnp’ option, M32RX . 102

‘-Wp’ option, M32RX . 102

-wsigned_overflow command line option, V850

. 129

-wunsigned_overflow command line option, V850

. 129

.

. (symbol) . 30

.hidden directive . 40

.insn . 117

.internal directive . 42

.ltorg directive, ARM . 66

.o . 9

.param on HPPA . 82

.pool directive, ARM . 66

.popsection directive . 48

.previous directive . 47

.protected directive . 48

.pushsection directive . 48

.set autoextend . 117

.set mipsn . 116

.set noautoextend . 117

.set pop . 117

.set push . 117

.subsection directive . 54

.v850 directive, V850 . 132

.v850e directive, V850 . 132

.version . 56

.vtable_entry . 56

.vtable_inherit . 56

.weak . 56

:
: (label) . 19

@
@word modifier, D10V . 71

\
\" (doublequote character) 20

\\ (‘\’ character) . 20

\b (backspace character) . 19

\ddd (octal character code). 20

\f (formfeed character) . 20

\n (newline character). 20

\r (carriage return character) 20

\t (tab) . 20

\xd... (hex character code) 20

1
16-bit code, i386 . 93

2
29K support . 62

2byte directive, ARC . 60

3
3byte directive, ARC . 60

3DNow!, i386 . 93

3DNow!, x86-64 . 93

4
4byte directive, ARC . 61

Index 153

A
a.out . 9

a.out symbol attributes . 31

abort directive . 35

ABORT directive . 35

absolute section . 24

addition, permitted arguments 34

addresses . 33

addresses, format of . 24

addressing modes, D10V . 70

addressing modes, D30V . 75

addressing modes, H8/300 . 76

addressing modes, H8/500 . 79

addressing modes, M680x0 106

addressing modes, M68HC11 112

addressing modes, SH . 119

addressing modes, Z8000 . 123

ADR reg,<label> pseudo op, ARM 66

ADRL reg,<label> pseudo op, ARM 67

advancing location counter 46

align directive . 35

align directive, ARM . 65

align directive, SPARC . 122

altered difference tables . 57

alternate syntax for the 680x0 107

AMD 29K floating point (ieee) 62

AMD 29K identifiers . 62

AMD 29K line comment character 62

AMD 29K machine directives 63

AMD 29K macros . 62

AMD 29K opcodes . 63

AMD 29K options (none) . 62

AMD 29K protected registers 62

AMD 29K register names . 62

AMD 29K special purpose registers 62

AMD 29K support . 62

ARC floating point (ieee) . 60

ARC machine directives . 60

ARC opcodes . 61

ARC options (none) . 60

ARC register names . 60

ARC special characters . 60

ARC support . 60

arc5 arc5, ARC . 60

arc6 arc6, ARC . 60

arc7 arc7, ARC . 60

arc8 arc8, ARC . 60

arch directive, i386 . 94

arch directive, x86-64 . 94

architecture options, i960 . 98

architecture options, M32R 102

architecture options, M32RX 102

architecture options, M680x0 105

architectures, SPARC . 121

arguments for addition . 34

arguments for subtraction . 34

arguments in expressions . 33

arithmetic functions . 33

arithmetic operands . 33

arm directive, ARM . 66

ARM floating point (ieee). 65

ARM identifiers . 65

ARM immediate character. 65

ARM line comment character 65

ARM line separator . 65

ARM machine directives . 65

ARM opcodes . 66

ARM options (none) . 64

ARM register names . 65

ARM support . 64

ascii directive . 36

asciz directive . 36

assembler bugs, reporting 135

assembler crash . 135

assembler internal logic error 25

assembler version . 15

assembler, and linker . 23

assembly listings, enabling . 11

assigning values to symbols 29, 38

atmp directive, i860 . 96

att syntax pseudo op, i386 . 88

att syntax pseudo op, x86-64 88

attributes, symbol . 30

auxiliary attributes, COFF symbols 31

auxiliary symbol information, COFF 37

Av7 . 121

154 Using as

B
backslash (\\) . 20

backspace (\b) . 19

balign directive . 36

balignl directive . 36

balignw directive . 36

big endian output, MIPS . 6

big endian output, PJ . 5

big-endian output, MIPS . 114

bignums . 21

binary integers . 21

bitfields, not supported on VAX 129

block . 124

block directive, AMD 29K 63

branch improvement, M680x0 109

branch improvement, M68HC11 112

branch improvement, VAX 127

branch recording, i960 . 98

branch statistics table, i960 98

bss directive, i960 . 99

bss section . 24, 26

bug criteria . 135

bug reports . 135

bugs in assembler . 135

bus lock prefixes, i386 . 90

bval . 124

byte directive . 36

C
call instructions, i386 . 89

call instructions, x86-64 . 89

callj, i960 pseudo-opcode 100

carriage return (\r) . 20

character constants . 19

character escape codes . 19

character, single . 20

characters used in symbols 18

code directive, ARM . 65

code16 directive, i386 . 93

code16gcc directive, i386 . 93

code32 directive, i386 . 93

code64 directive, i386 . 93

code64 directive, x86-64 . 93

COFF auxiliary symbol information 37

COFF structure debugging 55

COFF symbol attributes . 31

COFF symbol descriptor . 37

COFF symbol storage class 49

COFF symbol type . 55

COFF symbols, debugging 37

COFF value attribute . 56

COMDAT . 44

comm directive . 37

command line conventions . 8

command line options, V850 129

command-line options ignored, VAX 125

comments . 17

comments, M680x0 . 110

comments, removed by preprocessor 17

common directive, SPARC . 122

common sections. 44

common variable storage . 26

compare and jump expansions, i960 100

compare/branch instructions, i960 100

conditional assembly . 41

constant, single character . 20

constants. 19

constants, bignum . 21

constants, character . 19

constants, converted by preprocessor 17

constants, floating point . 21

constants, integer . 21

constants, number . 20

constants, string . 19

conversion instructions, i386 89

conversion instructions, x86-64 89

coprocessor wait, i386 . 90

cputype directive, AMD 29K 63

crash of assembler . 135

ctbp register, V850 . 132

ctoff pseudo-op, V850 . 134

ctpc register, V850 . 132

ctpsw register, V850 . 132

current address . 30

current address, advancing 46

Index 155

D
D10V @word modifier . 71

D10V addressing modes . 70

D10V floating point . 71

D10V line comment character. 69

D10V opcode summary . 71

D10V optimization . 4

D10V options . 68

D10V registers . 69

D10V size modifiers . 68

D10V sub-instruction ordering 69

D10V sub-instructions . 68

D10V support . 68

D10V syntax . 68

D30V addressing modes . 75

D30V floating point . 75

D30V Guarded Execution . 74

D30V line comment character. 73

D30V nops . 4

D30V nops after 32-bit multiply 4

D30V opcode summary . 75

D30V optimization . 4

D30V options . 72

D30V registers . 74

D30V size modifiers . 72

D30V sub-instruction ordering 73

D30V sub-instructions . 72

D30V support . 72

D30V syntax . 72

data alignment on SPARC. 121

data and text sections, joining 14

data directive . 37

data section . 24

data1 directive, M680x0 . 108

data2 directive, M680x0 . 108

dbpc register, V850 . 132

dbpsw register, V850 . 132

debuggers, and symbol order. 29

debugging COFF symbols . 37

decimal integers . 21

def directive . 37

dependency tracking . 14

deprecated directives . 57

desc directive . 37

descriptor, of a.out symbol 31

dfloat directive, VAX . 126

difference tables altered . 57

difference tables, warning . 12

dim directive . 37

directives and instructions . 19

directives, M680x0 . 108

directives, machine independent 35

directives, Z8000 . 124

displacement sizing character, VAX 128

dot (symbol) . 30

double directive . 38

double directive, i386 . 92

double directive, M680x0 108

double directive, M68HC11 112

double directive, VAX . 126

double directive, x86-64 . 92

doublequote (\") . 20

dual directive, i860 . 96

E
ECOFF sections . 116

ecr register, V850 . 131

eight-byte integer . 49

eipc register, V850 . 131

eipsw register, V850 . 131

eject directive . 38

ELF symbol type . 55

else directive . 38

elseif directive . 38

empty expressions . 33

emulation . 6

end directive . 38

enddual directive, i860 . 96

endef directive . 38

endfunc directive . 38

endianness, MIPS . 6

endianness, PJ. 5

endif directive . 38

endm directive . 46

EOF, newline must precede 18

ep register, V850 . 131

equ directive . 38

equiv directive . 39

err directive . 39

error messages . 9

error on valid input . 135

errors, caused by warnings . 15

156 Using as

errors, continuing after . 15

ESA/390 floating point (ieee) 86

ESA/390 support . 85

ESA/390 Syntax . 85

ESA/390-only directives . 86

escape codes, character . 19

even . 124

even directive, M680x0 . 108

exitm directive . 46

expr (internal section) . 25

expression arguments . 33

expressions . 33

expressions, empty . 33

expressions, integer . 33

extAuxRegister directive, ARC 61

extCondCode directive, ARC 61

extCoreRegister directive, ARC 61

extend directive M680x0 . 108

extend directive M68HC11 112

extended directive, i960 . 99

extern directive . 39

extInstruction directive, ARC 61

F
fail directive . 39

faster processing (-f) . 11

fatal signal . 135

fepc register, V850 . 131

fepsw register, V850 . 131

ffloat directive, VAX . 126

file directive . 39

file directive, AMD 29K . 63

file name, logical . 39

files, including . 42

files, input . 8

fill directive . 40

filling memory . 52

float directive . 40

float directive, i386 . 92

float directive, M680x0 . 108

float directive, M68HC11 112

float directive, VAX . 126

float directive, x86-64 . 92

floating point numbers . 21

floating point numbers (double) 38

floating point numbers (single) 40, 51

floating point, AMD 29K (ieee) 62

floating point, ARC (ieee) 60

floating point, ARM (ieee) 65

floating point, D10V . 71

floating point, D30V . 75

floating point, ESA/390 (ieee) 86

floating point, H8/300 (ieee) 77

floating point, H8/500 (ieee) 80

floating point, HPPA (ieee) 81

floating point, i386 . 92

floating point, i960 (ieee) . 99

floating point, M680x0 . 108

floating point, M68HC11 . 112

floating point, SH (ieee) . 120

floating point, SPARC (ieee) 122

floating point, V850 (ieee) 132

floating point, VAX . 126

floating point, x86-64 . 92

flonums . 21

force_thumb directive, ARM 66

format of error messages . 10

format of warning messages . 9

formfeed (\f) . 20

func directive . 40

functions, in expressions . 33

G
gbr960, i960 postprocessor 98

gfloat directive, VAX . 126

global . 124

global directive . 40

gp register, MIPS . 116

gp register, V850 . 130

grouping data . 25

H
H8/300 addressing modes . 76

H8/300 floating point (ieee) 77

H8/300 line comment character 76

H8/300 line separator . 76

H8/300 machine directives (none) 78

H8/300 opcode summary . 78

H8/300 options (none) . 76

H8/300 registers . 76

H8/300 size suffixes . 78

Index 157

H8/300 support . 76

H8/300H, assembling for . 78

H8/500 addressing modes . 79

H8/500 floating point (ieee) 80

H8/500 line comment character 79

H8/500 line separator . 79

H8/500 machine directives (none) 80

H8/500 opcode summary . 80

H8/500 options (none) . 79

H8/500 registers . 79

H8/500 support . 79

half directive, ARC . 61

half directive, SPARC . 122

hex character code (\xd...) 20

hexadecimal integers . 21

hfloat directive, VAX . 126

hi pseudo-op, V850 . 133

hi0 pseudo-op, V850 . 132

hilo pseudo-op, V850 . 133

HPPA directives not supported 82

HPPA floating point (ieee) 81

HPPA Syntax . 81

HPPA-only directives . 82

hword directive . 41

I
i370 support . 85

i386 16-bit code . 93

i386 arch directive . 94

i386 att syntax pseudo op . 88

i386 conversion instructions 89

i386 floating point . 92

i386 immediate operands . 88

i386 instruction naming . 89

i386 instruction prefixes . 90

i386 intel syntax pseudo op 88

i386 jump optimization . 92

i386 jump, call, return . 88

i386 jump/call operands . 88

i386 memory references . 91

i386 mul, imul instructions 94

i386 options . 88

i386 register operands . 88

i386 registers . 89

i386 sections. 88

i386 size suffixes . 88

i386 source, destination operands 88

i386 support . 88

i386 syntax compatibility . 88

i80306 support . 88

i860 machine directives . 96

i860 opcodes . 97

i860 support . 96

i960 architecture options . 98

i960 branch recording . 98

i960 callj pseudo-opcode 100

i960 compare and jump expansions 100

i960 compare/branch instructions 100

i960 floating point (ieee) . 99

i960 machine directives . 99

i960 opcodes . 100

i960 options . 98

i960 support . 98

ident directive . 41

identifiers, AMD 29K . 62

identifiers, ARM . 65

if directive . 41

ifc directive . 41

ifdef directive . 41

ifeq directive . 41

ifeqs directive . 41

ifge directive . 41

ifgt directive . 41

ifle directive . 41

iflt directive . 41

ifnc directive . 41

ifndef directive . 42

ifne directive . 42

ifnes directive . 42

ifnotdef directive . 42

immediate character, ARM 65

immediate character, M680x0 110

immediate character, VAX 128

immediate operands, i386 . 88

immediate operands, x86-64 88

imul instruction, i386 . 94

imul instruction, x86-64 . 94

include directive . 42

include directive search path 12

indirect character, VAX . 128

infix operators . 34

inhibiting interrupts, i386 . 90

input . 8

158 Using as

input file linenumbers . 9

instruction naming, i386 . 89

instruction naming, x86-64 89

instruction prefixes, i386 . 90

instruction set, M680x0 . 109

instruction set, M68HC11 112

instruction summary, D10V. 71

instruction summary, D30V. 75

instruction summary, H8/300 78

instruction summary, H8/500 80

instruction summary, SH . 120

instruction summary, Z8000 124

instructions and directives . 19

int directive . 42

int directive, H8/300 . 78

int directive, H8/500 . 80

int directive, i386 . 92

int directive, x86-64 . 92

integer expressions . 33

integer, 16-byte . 46

integer, 8-byte . 49

integers . 21

integers, 16-bit . 41

integers, 32-bit . 42

integers, binary . 21

integers, decimal . 21

integers, hexadecimal . 21

integers, octal . 21

integers, one byte . 36

intel syntax pseudo op, i386 88

intel syntax pseudo op, x86-64 88

internal assembler sections . 25

invalid input . 135

invocation summary . 1

irp directive . 42

irpc directive . 43

J
joining text and data sections 14

jump instructions, i386 . 89

jump instructions, x86-64 . 89

jump optimization, i386 . 92

jump optimization, x86-64 . 92

jump/call operands, i386 . 88

jump/call operands, x86-64 88

L
label (:) . 19

labels . 29

lcomm directive . 43

ld . 9

ldouble directive M680x0 108

ldouble directive M68HC11 112

LDR reg,=<label> pseudo op, ARM 66

leafproc directive, i960 . 99

length of symbols . 18

lflags directive (ignored) . 43

line comment character . 18

line comment character, AMD 29K 62

line comment character, ARM 65

line comment character, D10V 69

line comment character, D30V 73

line comment character, H8/300 76

line comment character, H8/500 79

line comment character, M680x0 110

line comment character, SH 119

line comment character, V850 129

line comment character, Z8000 123

line directive . 43

line directive, AMD 29K . 63

line numbers, in input files . 9

line numbers, in warnings/errors 9

line separator character . 18

line separator, ARM . 65

line separator, H8/300 . 76

line separator, H8/500 . 79

line separator, SH . 119

line separator, Z8000 . 123

lines starting with # . 18

linker . 9

linker, and assembler . 23

linkonce directive . 44

list directive . 45

listing control, turning off . 46

listing control, turning on . 45

listing control: new page . 38

listing control: paper size . 48

listing control: subtitle . 49

listing control: title line . 55

listings, enabling . 11

little endian output, MIPS . 6

little endian output, PJ . 5

Index 159

little-endian output, MIPS 114

ln directive . 44

lo pseudo-op, V850 . 132

local common symbols . 43

local labels, retaining in output 12

local symbol names . 29

location counter . 30

location counter, advancing 46

logical file name . 39

logical line number . 43

logical line numbers . 18

long directive . 45

long directive, ARC . 61

long directive, i386 . 92

long directive, x86-64 . 92

lp register, V850 . 131

lval . 124

M
M32R architecture options 102

M32R options . 102

M32R support . 102

M32R warnings . 102

M680x0 addressing modes 106

M680x0 architecture options 105

M680x0 branch improvement 109

M680x0 directives . 108

M680x0 floating point . 108

M680x0 immediate character 110

M680x0 line comment character. 110

M680x0 opcodes . 109

M680x0 options . 104

M680x0 pseudo-opcodes . 109

M680x0 size modifiers . 106

M680x0 support . 104

M680x0 syntax . 106

M68HC11 addressing modes 112

M68HC11 and M68HC12 support 111

M68HC11 branch improvement 112

M68HC11 floating point . 112

M68HC11 opcodes . 112

M68HC11 options . 111

M68HC11 pseudo-opcodes 112

M68HC11 syntax . 111

machine dependencies . 59

machine directives, AMD 29K 63

machine directives, ARC . 60

machine directives, ARM . 65

machine directives, H8/300 (none) 78

machine directives, H8/500 (none) 80

machine directives, i860 . 96

machine directives, i960 . 99

machine directives, SH . 120

machine directives, SPARC 122

machine directives, V850 . 132

machine directives, VAX . 126

machine independent directives 35

machine instructions (not covered) 7

machine-independent syntax 17

macro directive . 45

macros . 45

Macros, AMD 29K . 62

macros, count executed . 46

make rules . 14

manual, structure and purpose 7

memory references, i386 . 91

memory references, x86-64 . 91

merging text and data sections 14

messages from assembler . 9

minus, permitted arguments 34

MIPS architecture options 114

MIPS big-endian output . 114

MIPS debugging directives 116

MIPS ECOFF sections . 116

MIPS endianness . 6

MIPS ISA . 6

MIPS ISA override. 116

MIPS little-endian output 114

MIPS option stack . 117

MIPS processor . 114

mit . 106

MMX, i386 . 93

MMX, x86-64 . 93

mnemonic suffixes, i386 . 88

mnemonic suffixes, x86-64 . 88

mnemonics for opcodes, VAX 126

mnemonics, D10V . 71

mnemonics, D30V . 75

mnemonics, H8/300 . 78

mnemonics, H8/500 . 80

mnemonics, SH . 120

mnemonics, Z8000 . 124

Motorola syntax for the 680x0 107

160 Using as

MRI compatibility mode . 12

mri directive . 44

MRI mode, temporarily . 44

mul instruction, i386 . 94

mul instruction, x86-64 . 94

N
name . 124

named section . 50

named sections . 24

names, symbol . 29

naming object file . 14

new page, in listings . 38

newline (\n) . 20

newline, required at file end 18

nolist directive . 46

NOP pseudo op, ARM . 66

null-terminated strings . 36

number constants . 20

number of macros executed 46

numbered subsections . 25

numbers, 16-bit . 41

numeric values . 33

nword directive, SPARC . 122

O
object file . 9

object file format . 8

object file name . 14

object file, after errors . 15

obsolescent directives . 57

octa directive . 46

octal character code (\ddd). 20

octal integers . 21

offset directive, V850 . 132

opcode mnemonics, VAX . 126

opcode summary, D10V . 71

opcode summary, D30V . 75

opcode summary, H8/300 . 78

opcode summary, H8/500 . 80

opcode summary, SH . 120

opcode summary, Z8000 . 124

opcodes for AMD 29K . 63

opcodes for ARC . 61

opcodes for ARM . 66

opcodes for V850 . 132

opcodes, i860 . 97

opcodes, i960 . 100

opcodes, M680x0 . 109

opcodes, M68HC11 . 112

operand delimiters, i386 . 88

operand delimiters, x86-64 . 88

operand notation, VAX . 128

operands in expressions . 33

operator precedence . 34

operators, in expressions . 33

operators, permitted arguments 34

optimization, D10V . 4

optimization, D30V . 4

option directive, ARC . 61

option summary . 1

options for AMD29K (none) 62

options for ARC (none) . 60

options for ARM (none) . 64

options for i386 . 88

options for SPARC . 121

options for V850 (none) . 129

options for VAX/VMS . 125

options for x86-64 . 88

options, all versions of assembler 11

options, command line . 8

options, D10V . 68

options, D30V . 72

options, H8/300 (none) . 76

options, H8/500 (none) . 79

options, i960 . 98

options, M32R. 102

options, M680x0 . 104

options, M68HC11 . 111

options, PJ . 118

options, SH (none) . 119

options, Z8000 . 123

org directive . 46

other attribute, of a.out symbol 31

output file . 9

Index 161

P

p2align directive . 47

p2alignl directive . 47

p2alignw directive . 47

padding the location counter. 35

padding the location counter given a power of two

. 47

padding the location counter given number of

bytes . 36

page, in listings . 38

paper size, for listings . 48

paths for .include . 12

patterns, writing in memory 40

PIC code generation for ARM 65

PJ endianness . 5

PJ options . 118

PJ support . 118

plus, permitted arguments . 34

precedence of operators . 34

precision, floating point . 21

prefix operators . 34

prefixes, i386 . 90

preprocessing . 17

preprocessing, turning on and off 17

primary attributes, COFF symbols 31

print directive . 48

proc directive, SPARC . 122

protected registers, AMD 29K 62

pseudo-opcodes, M680x0 . 109

pseudo-opcodes, M68HC11 112

pseudo-ops for branch, VAX 127

pseudo-ops, machine independent 35

psize directive . 48

psw register, V850 . 131

purgem directive . 48

purpose of gnu assembler . 8

Q

quad directive . 49

quad directive, i386 . 92

quad directive, x86-64 . 92

R
real-mode code, i386 . 93

register directive, SPARC 122

register names, AMD 29K . 62

register names, ARC . 60

register names, ARM . 65

register names, H8/300 . 76

register names, V850 . 130

register names, VAX . 128

register operands, i386 . 88

register operands, x86-64 . 88

registers, D10V . 69

registers, D30V . 74

registers, H8/500 . 79

registers, i386 . 89

registers, SH . 119

registers, x86-64 . 89

registers, Z8000 . 123

relocation . 23

relocation example . 25

repeat prefixes, i386 . 90

reporting bugs in assembler 135

rept directive . 49

req directive, ARM . 65

reserve directive, SPARC 122

return instructions, i386 . 88

return instructions, x86-64. 88

REX prefixes, i386 . 90

rsect . 124

S
sbttl directive . 49

scl directive . 49

sdaoff pseudo-op, V850 . 133

search path for .include . 12

sect directive, AMD 29K . 63

section directive . 50

section directive, V850 . 132

section override prefixes, i386 90

Section Stack. 47, 48, 50, 54

section-relative addressing . 24

sections . 23

sections in messages, internal 25

sections, i386 . 88

sections, named . 24

162 Using as

sections, x86-64 . 88

seg directive, SPARC . 122

segm . 124

set directive . 51

SH addressing modes . 119

SH floating point (ieee) . 120

SH line comment character 119

SH line separator . 119

SH machine directives . 120

SH opcode summary . 120

SH options (none) . 119

SH registers . 119

SH support. 119

short directive . 51

short directive, ARC . 61

SIMD, i386 . 93

SIMD, x86-64 . 93

single character constant . 20

single directive . 51

single directive, i386 . 92

single directive, x86-64 . 92

sixteen bit integers . 41

sixteen byte integer . 46

size directive . 52

size modifiers, D10V . 68

size modifiers, D30V . 72

size modifiers, M680x0 . 106

size prefixes, i386 . 90

size suffixes, H8/300 . 78

sizes operands, i386 . 88

sizes operands, x86-64 . 88

skip directive . 52

skip directive, M680x0 . 108

skip directive, SPARC . 122

sleb128 directive . 52

small objects, MIPS ECOFF 116

SOM symbol attributes . 31

source program . 8

source, destination operands; i386 88

source, destination operands; x86-64 88

sp register, V850 . 130

space directive . 52

space used, maximum for assembly 15

SPARC architectures . 121

SPARC data alignment . 121

SPARC floating point (ieee). 122

SPARC machine directives 122

SPARC options . 121

SPARC support . 121

special characters, ARC . 60

special characters, M680x0 110

special purpose registers, AMD 29K 62

stabd directive . 53

stabn directive . 53

stabs directive . 53

stabx directives . 52

standard assembler sections 23

standard input, as input file 8

statement separator character. 18

statement separator, ARM 65

statement separator, H8/300 76

statement separator, H8/500 79

statement separator, SH . 119

statement separator, Z8000 123

statements, structure of . 18

statistics, about assembly . 15

stopping the assembly . 35

string constants. 19

string directive . 53

string directive on HPPA . 83

string literals . 36

string, copying to object file 53

struct directive . 53

structure debugging, COFF 55

sub-instruction ordering, D10V 69

sub-instruction ordering, D30V 73

sub-instructions, D10V . 68

sub-instructions, D30V . 72

subexpressions . 33

subtitles for listings . 49

subtraction, permitted arguments 34

summary of options . 1

support . 81

supporting files, including . 42

suppressing warnings . 15

sval . 124

symbol attributes . 30

symbol attributes, a.out . 31

symbol attributes, COFF . 31

symbol attributes, SOM . 31

symbol descriptor, COFF . 37

symbol names . 29

symbol names, ‘$’ in 69, 73, 79, 119

symbol names, local . 29

Index 163

symbol names, temporary . 29

symbol storage class (COFF) 49

symbol type . 31

symbol type, COFF . 55

symbol type, ELF . 55

symbol value . 30

symbol value, setting . 51

symbol values, assigning . 29

symbol versioning . 54

symbol, common . 37

symbol, making visible to linker 40

symbolic debuggers, information for 52

symbols . 29

symbols with uppercase, VAX/VMS 125

symbols, assigning values to 38

symbols, local common . 43

symver directive . 54

syntax compatibility, i386 . 88

syntax compatibility, x86-64 88

syntax, D10V. 68

syntax, D30V. 72

syntax, M680x0 . 106

syntax, M68HC11 . 111

syntax, machine-independent 17

sysproc directive, i960 . 100

T
tab (\t) . 20

tag directive . 55

tdaoff pseudo-op, V850 . 133

temporary symbol names . 29

text and data sections, joining 14

text directive . 55

text section . 24

tfloat directive, i386 . 92

tfloat directive, x86-64 . 92

thumb directive, ARM . 65

Thumb support . 64

thumb_func directive, ARM 66

thumb_set directive, ARM. 66

time, total for assembly . 15

title directive . 55

tp register, V850 . 130

trusted compiler . 11

turning preprocessing on and off 17

type directive . 55

type of a symbol . 31

U

ualong directive, SH . 120

uaword directive, SH . 120

uleb128 directive . 56

undefined section . 25

unsegm . 124

use directive, AMD 29K . 63

V

V850 command line options 129

V850 floating point (ieee) 132

V850 line comment character 129

V850 machine directives . 132

V850 opcodes . 132

V850 options (none) . 129

V850 register names . 130

V850 support. 129

val directive . 56

value attribute, COFF . 56

value of a symbol . 30

VAX bitfields not supported 129

VAX branch improvement 127

VAX command-line options ignored 125

VAX displacement sizing character 128

VAX floating point . 126

VAX immediate character 128

VAX indirect character . 128

VAX machine directives . 126

VAX opcode mnemonics . 126

VAX operand notation . 128

VAX register names . 128

VAX support . 125

Vax-11 C compatibility . 125

VAX/VMS options . 125

version of assembler . 15

versions of symbols . 54

Visibility . 40, 42, 48

VMS (VAX) options . 125

164 Using as

W
warning for altered difference tables 12

warning messages . 9

warnings, causing error . 15

warnings, M32R . 102

warnings, suppressing . 15

warnings, switching on . 15

whitespace . 17

whitespace, removed by preprocessor 17

wide floating point directives, VAX. 126

word directive . 57

word directive, ARC . 61

word directive, H8/300 . 78

word directive, H8/500 . 80

word directive, i386 . 92

word directive, SPARC . 122

word directive, x86-64 . 92

writing patterns in memory 40

wval . 124

X
x86-64 arch directive . 94

x86-64 att syntax pseudo op 88

x86-64 conversion instructions 89

x86-64 floating point . 92

x86-64 immediate operands 88

x86-64 instruction naming . 89

x86-64 intel syntax pseudo op 88

x86-64 jump optimization . 92

x86-64 jump, call, return . 88

x86-64 jump/call operands 88

x86-64 memory references . 91

x86-64 options . 88

x86-64 register operands . 88

x86-64 registers . 89

x86-64 sections . 88

x86-64 size suffixes . 88

x86-64 source, destination operands 88

x86-64 support . 88

x86-64 syntax compatibility 88

xword directive, SPARC . 122

Z
Z800 addressing modes . 123

Z8000 directives . 124

Z8000 line comment character 123

Z8000 line separator . 123

Z8000 opcode summary . 124

Z8000 options . 123

Z8000 registers . 123

Z8000 support . 123

zdaoff pseudo-op, V850 . 134

zero register, V850 . 130

zero-terminated strings . 36

i

Table of Contents

1 Overview . 1
1.1 Structure of this Manual . 7
1.2 The GNU Assembler . 8
1.3 Object File Formats . 8
1.4 Command Line . 8
1.5 Input Files . 9
1.6 Output (Object) File . 9
1.7 Error and Warning Messages . 10

2 Command-Line Options 11
2.1 Enable Listings: -a[cdhlns] . 11
2.2 -D . 11
2.3 Work Faster: -f. 12
2.4 .include search path: -I path . 12
2.5 Difference Tables: -K . 12
2.6 Include Local Labels: -L . 12
2.7 Assemble in MRI Compatibility Mode: -M. 12
2.8 Dependency tracking: --MD . 14
2.9 Name the Object File: -o . 14
2.10 Join Data and Text Sections: -R . 15
2.11 Display Assembly Statistics: --statistics 15
2.12 Compatible output: --traditional-format 15
2.13 Announce Version: -v . 15
2.14 Control Warnings: -W, --warn, --no-warn,

--fatal-warnings . 15
2.15 Generate Object File in Spite of Errors: -Z. 16

3 Syntax . 17
3.1 Preprocessing . 17
3.2 Whitespace . 17
3.3 Comments . 17
3.4 Symbols . 18
3.5 Statements . 19
3.6 Constants . 19

3.6.1 Character Constants . 19
3.6.1.1 Strings . 20
3.6.1.2 Characters . 20

3.6.2 Number Constants . 21
3.6.2.1 Integers . 21
3.6.2.2 Bignums . 21
3.6.2.3 Flonums . 21

ii Using as

4 Sections and Relocation 23
4.1 Background . 23
4.2 Linker Sections. 24
4.3 Assembler Internal Sections . 25
4.4 Sub-Sections . 26
4.5 bss Section . 26

5 Symbols . 29
5.1 Labels . 29
5.2 Giving Symbols Other Values . 29
5.3 Symbol Names . 29
5.4 The Special Dot Symbol . 30
5.5 Symbol Attributes . 30

5.5.1 Value . 31
5.5.2 Type . 31
5.5.3 Symbol Attributes: a.out . 31

5.5.3.1 Descriptor . 31
5.5.3.2 Other . 31

5.5.4 Symbol Attributes for COFF 31
5.5.4.1 Primary Attributes . 31
5.5.4.2 Auxiliary Attributes 32

5.5.5 Symbol Attributes for SOM . 32

6 Expressions . 33
6.1 Empty Expressions . 33
6.2 Integer Expressions . 33

6.2.1 Arguments . 33
6.2.2 Operators . 33
6.2.3 Prefix Operator . 34
6.2.4 Infix Operators . 34

7 Assembler Directives . 35
7.1 .abort . 35
7.2 .ABORT . 35
7.3 .align abs-expr, abs-expr, abs-expr . 35
7.4 .ascii "string". 36
7.5 .asciz "string". 36
7.6 .balign[wl] abs-expr, abs-expr, abs-expr 36
7.7 .byte expressions . 37
7.8 .comm symbol , length . 37
7.9 .data subsection . 37
7.10 .def name . 37
7.11 .desc symbol, abs-expression . 37
7.12 .dim . 38
7.13 .double flonums . 38
7.14 .eject . 38
7.15 .else . 38

iii

7.16 .elseif . 38
7.17 .end . 38
7.18 .endef . 39
7.19 .endfunc . 39
7.20 .endif . 39
7.21 .equ symbol, expression . 39
7.22 .equiv symbol, expression . 39
7.23 .err . 39
7.24 .exitm . 39
7.25 .extern . 40
7.26 .fail expression . 40
7.27 .file string . 40
7.28 .fill repeat , size , value . 40
7.29 .float flonums . 40
7.30 .func name[,label] . 41
7.31 .global symbol, .globl symbol . 41
7.32 .hidden names . 41
7.33 .hword expressions . 41
7.34 .ident . 41
7.35 .if absolute expression . 42
7.36 .include "file" . 43
7.37 .int expressions . 43
7.38 .internal names . 43
7.39 .irp symbol,values . 43
7.40 .irpc symbol,values . 44
7.41 .lcomm symbol , length . 44
7.42 .lflags . 44
7.43 .line line-number . 44
7.44 .linkonce [type]. 45
7.45 .ln line-number . 45
7.46 .mri val . 45
7.47 .list . 46
7.48 .long expressions . 46
7.49 .macro . 46
7.50 .nolist . 47
7.51 .octa bignums . 47
7.52 .org new-lc , fill . 47
7.53 .p2align[wl] abs-expr, abs-expr, abs-expr 48
7.54 .previous . 48
7.55 .popsection . 49
7.56 .print string . 49
7.57 .protected names . 49
7.58 .psize lines , columns . 49
7.59 .purgem name . 50
7.60 .pushsection name , subsection . 50
7.61 .quad bignums . 50
7.62 .rept count . 50
7.63 .sbttl "subheading" . 51

iv Using as

7.64 .scl class . 51
7.65 .section name (COFF version). 51
7.66 .section name (ELF version) . 52
7.67 .set symbol, expression . 52
7.68 .short expressions . 53
7.69 .single flonums . 53
7.70 .size (COFF version) . 53
7.71 .size name , expression (ELF version) 53
7.72 .sleb128 expressions . 53
7.73 .skip size , fill . 54
7.74 .space size , fill . 54
7.75 .stabd, .stabn, .stabs . 54
7.76 .string "str" . 55
7.77 .struct expression . 55
7.78 .subsection name . 55
7.79 .symver . 56
7.80 .tag structname . 56
7.81 .text subsection . 57
7.82 .title "heading" . 57
7.83 .type int (COFF version) . 57
7.84 .type name , type description (ELF version) 57
7.85 .uleb128 expressions . 58
7.86 .val addr . 58
7.87 .version "string" . 58
7.88 .vtable_entry table, offset . 58
7.89 .vtable_inherit child, parent . 58
7.90 .weak names . 58
7.91 .word expressions . 59
7.92 Deprecated Directives . 59

8 Machine Dependent Features 61
8.1 ARC Dependent Features . 62

8.1.1 Options . 62
8.1.2 Syntax . 62

8.1.2.1 Special Characters . 62
8.1.2.2 Register Names . 62

8.1.3 Floating Point . 62
8.1.4 ARC Machine Directives . 63
8.1.5 Opcodes . 63

8.2 AMD 29K Dependent Features . 64
8.2.1 Options . 64
8.2.2 Syntax . 64

8.2.2.1 Macros . 64
8.2.2.2 Special Characters . 64
8.2.2.3 Register Names . 64

8.2.3 Floating Point . 65
8.2.4 AMD 29K Machine Directives 65
8.2.5 Opcodes . 65

v

8.3 ARM Dependent Features . 66
8.3.1 Options . 66
8.3.2 Syntax . 67

8.3.2.1 Special Characters . 67
8.3.2.2 Register Names . 67

8.3.3 Floating Point . 67
8.3.4 ARM Machine Directives . 67
8.3.5 Opcodes . 68

8.4 D10V Dependent Features . 70
8.4.1 D10V Options . 70
8.4.2 Syntax . 70

8.4.2.1 Size Modifiers. 70
8.4.2.2 Sub-Instructions . 70
8.4.2.3 Special Characters . 71
8.4.2.4 Register Names . 72
8.4.2.5 Addressing Modes . 72
8.4.2.6 @WORD Modifier . 73

8.4.3 Floating Point . 73
8.4.4 Opcodes . 73

8.5 D30V Dependent Features . 74
8.5.1 D30V Options . 74
8.5.2 Syntax . 74

8.5.2.1 Size Modifiers. 74
8.5.2.2 Sub-Instructions . 74
8.5.2.3 Special Characters . 75
8.5.2.4 Guarded Execution. 76
8.5.2.5 Register Names . 76
8.5.2.6 Addressing Modes . 77

8.5.3 Floating Point . 77
8.5.4 Opcodes . 77

8.6 H8/300 Dependent Features . 78
8.6.1 Options . 78
8.6.2 Syntax . 78

8.6.2.1 Special Characters . 78
8.6.2.2 Register Names . 78
8.6.2.3 Addressing Modes . 78

8.6.3 Floating Point . 79
8.6.4 H8/300 Machine Directives . 80
8.6.5 Opcodes . 80

8.7 H8/500 Dependent Features . 81
8.7.1 Options . 81
8.7.2 Syntax . 81

8.7.2.1 Special Characters . 81
8.7.2.2 Register Names . 81
8.7.2.3 Addressing Modes . 81

8.7.3 Floating Point . 82
8.7.4 H8/500 Machine Directives . 82
8.7.5 Opcodes . 82

vi Using as

8.8 HPPA Dependent Features . 83
8.8.1 Notes . 83
8.8.2 Options . 83
8.8.3 Syntax . 83
8.8.4 Floating Point . 83
8.8.5 HPPA Assembler Directives . 84
8.8.6 Opcodes . 86

8.9 ESA/390 Dependent Features . 87
8.9.1 Notes . 87
8.9.2 Options . 87
8.9.3 Syntax . 87
8.9.4 Floating Point . 88
8.9.5 ESA/390 Assembler Directives 88
8.9.6 Opcodes . 89

8.10 80386 Dependent Features . 90
8.10.1 Options . 90
8.10.2 AT&T Syntax versus Intel Syntax 90
8.10.3 Instruction Naming . 91
8.10.4 Register Naming. 91
8.10.5 Instruction Prefixes . 92
8.10.6 Memory References . 93
8.10.7 Handling of Jump Instructions 94
8.10.8 Floating Point . 94
8.10.9 Intel’s MMX and AMD’s 3DNow! SIMD

Operations . 95
8.10.10 Writing 16-bit Code . 95
8.10.11 AT&T Syntax bugs . 96
8.10.12 Specifying CPU Architecture 96
8.10.13 Notes . 97

8.11 Intel i860 Dependent Features . 98
8.11.1 i860 Notes . 98
8.11.2 i860 Command-line Options 98

8.11.2.1 SVR4 compatibility options 98
8.11.2.2 Other options . 98

8.11.3 i860 Machine Directives . 98
8.11.4 i860 Opcodes . 99

8.11.4.1 Other instruction support
(pseudo-instructions) . 99

8.12 Intel 80960 Dependent Features . 100
8.12.1 i960 Command-line Options 100
8.12.2 Floating Point . 101
8.12.3 i960 Machine Directives . 101
8.12.4 i960 Opcodes . 102

8.12.4.1 callj . 102
8.12.4.2 Compare-and-Branch 102

8.13 M32R Dependent Features . 104
8.13.1 M32R Options . 104
8.13.2 M32R Warnings . 104

vii

8.14 M680x0 Dependent Features . 106
8.14.1 M680x0 Options . 106
8.14.2 Syntax . 108
8.14.3 Motorola Syntax . 109
8.14.4 Floating Point . 110
8.14.5 680x0 Machine Directives . 110
8.14.6 Opcodes . 111

8.14.6.1 Branch Improvement 111
8.14.6.2 Special Characters 112

8.15 M68HC11 and M68HC12 Dependent Features 114
8.15.1 M68HC11 and M68HC12 Options 114
8.15.2 Syntax . 114
8.15.3 Floating Point . 115
8.15.4 Opcodes . 115

8.15.4.1 Branch Improvement 115
8.16 MIPS Dependent Features . 117

8.16.1 Assembler options . 117
8.16.2 MIPS ECOFF object code 119
8.16.3 Directives for debugging information 119
8.16.4 Directives to override the ISA level 119
8.16.5 Directives for extending MIPS 16 bit instructions

. 120
8.16.6 Directive to mark data as an instruction 120
8.16.7 Directives to save and restore options 120

8.17 picoJava Dependent Features . 121
8.17.1 Options . 121

8.18 Hitachi SH Dependent Features . 122
8.18.1 Options . 122
8.18.2 Syntax . 122

8.18.2.1 Special Characters 122
8.18.2.2 Register Names . 122
8.18.2.3 Addressing Modes 122

8.18.3 Floating Point . 123
8.18.4 SH Machine Directives . 123
8.18.5 Opcodes . 123

8.19 SPARC Dependent Features . 124
8.19.1 Options . 124
8.19.2 Enforcing aligned data . 124
8.19.3 Floating Point . 125
8.19.4 Sparc Machine Directives . 125

8.20 Z8000 Dependent Features . 126
8.20.1 Options . 126
8.20.2 Syntax . 126

8.20.2.1 Special Characters 126
8.20.2.2 Register Names . 126
8.20.2.3 Addressing Modes 127

8.20.3 Assembler Directives for the Z8000 127
8.20.4 Opcodes . 128

viii Using as

8.21 VAX Dependent Features . 128
8.21.1 VAX Command-Line Options 128
8.21.2 VAX Floating Point . 129
8.21.3 Vax Machine Directives . 130
8.21.4 VAX Opcodes . 130
8.21.5 VAX Branch Improvement 130
8.21.6 VAX Operands . 132
8.21.7 Not Supported on VAX . 132

8.22 v850 Dependent Features . 132
8.22.1 Options . 132
8.22.2 Syntax . 133

8.22.2.1 Special Characters 133
8.22.2.2 Register Names . 133

8.22.3 Floating Point . 136
8.22.4 V850 Machine Directives . 136
8.22.5 Opcodes . 136

9 Reporting Bugs . 139
9.1 Have you found a bug? . 139
9.2 How to report bugs . 139

10 Acknowledgements . 143

11 GNU Free Documentation License 145

Index . 151

	Overview
	Structure of this Manual
	The GNU Assembler
	Object File Formats
	Command Line
	Input Files
	Output (Object) File
	Error and Warning Messages

	Command-Line Options
	Enable Listings: -a[cdhlns]
	-D
	Work Faster: -f
	.include search path: -I {�am slfam 	ensl path}�uturelet
ext /
	Difference Tables: -K
	Include Local Labels: -L
	Assemble in MRI Compatibility Mode: -M
	Dependency tracking: --MD
	Name the Object File: -o
	Join Data and Text Sections: -R
	Display Assembly Statistics: --statistics
	Compatible output: --traditional-format
	Announce Version: -v
	Control Warnings: -W, --warn, --no-warn, --fatal-warnings
	Generate Object File in Spite of Errors: -Z

	Syntax
	Preprocessing
	Whitespace
	Comments
	Symbols
	Statements
	Constants
	Character Constants
	Strings
	Characters

	Number Constants
	Integers
	Bignums
	Flonums

	Sections and Relocation
	Background
	Linker Sections
	Assembler Internal Sections
	Sub-Sections
	bss Section

	Symbols
	Labels
	Giving Symbols Other Values
	Symbol Names
	The Special Dot Symbol
	Symbol Attributes
	Value
	Type
	Symbol Attributes: a.out
	Descriptor
	Other

	Symbol Attributes for COFF
	Primary Attributes
	Auxiliary Attributes

	Symbol Attributes for SOM

	Expressions
	Empty Expressions
	Integer Expressions
	Arguments
	Operators
	Prefix Operator
	Infix Operators

	Assembler Directives
	.abort
	.ABORT
	.align {�am slfam 	ensl abs-expr}�uturelet
ext /, {�am slfam 	ensl abs-expr}�uturelet
ext /, {�am slfam 	ensl abs-expr}�uturelet
ext /
	.ascii "{�am slfam 	ensl string}�uturelet
ext /"unhbox voidb@x hbox to 1.5em{hskip 0pt plus 0.25fil minus 0.25fil .hss .hss .hskip 0pt plus 0.5fil minus 0.5fil }{}
	.asciz "{�am slfam 	ensl string}�uturelet
ext /"unhbox voidb@x hbox to 1.5em{hskip 0pt plus 0.25fil minus 0.25fil .hss .hss .hskip 0pt plus 0.5fil minus 0.5fil }{}
	.balign[wl] {�am slfam 	ensl abs-expr}�uturelet
ext /, {�am slfam 	ensl abs-expr}�uturelet
ext /, {�am slfam 	ensl abs-expr}�uturelet
ext /
	.byte {�am slfam 	ensl expressions}�uturelet
ext /
	.comm {�am slfam 	ensl symbol}�uturelet
ext / , {�am slfam 	ensl length}�uturelet
ext /
	.data {�am slfam 	ensl subsection}�uturelet
ext /
	.def {�am slfam 	ensl name}�uturelet
ext /
	.desc {�am slfam 	ensl symbol}�uturelet
ext /, {�am slfam 	ensl abs-expression}�uturelet
ext /
	.dim
	.double {�am slfam 	ensl flonums}�uturelet
ext /
	.eject
	.else
	.elseif
	.end
	.endef
	.endfunc
	.endif
	.equ {�am slfam 	ensl symbol}�uturelet
ext /, {�am slfam 	ensl expression}�uturelet
ext /
	.equiv {�am slfam 	ensl symbol}�uturelet
ext /, {�am slfam 	ensl expression}�uturelet
ext /
	.err
	.exitm
	.extern
	.fail {�am slfam 	ensl expression}�uturelet
ext /
	.file {�am slfam 	ensl string}�uturelet
ext /
	.fill {�am slfam 	ensl repeat}�uturelet
ext / , {�am slfam 	ensl size}�uturelet
ext / , {�am slfam 	ensl value}�uturelet
ext /
	.float {�am slfam 	ensl flonums}�uturelet
ext /
	.func {�am slfam 	ensl name}�uturelet
ext /[,{�am slfam 	ensl label}�uturelet
ext /]
	.global {�am slfam 	ensl symbol}�uturelet
ext /, .globl {�am slfam 	ensl symbol}�uturelet
ext /
	.hidden {�am slfam 	ensl names}�uturelet
ext /
	.hword {�am slfam 	ensl expressions}�uturelet
ext /
	.ident
	.if {�am slfam 	ensl absolute expression}�uturelet
ext /
	.include "{�am slfam 	ensl file}�uturelet
ext /"
	.int {�am slfam 	ensl expressions}�uturelet
ext /
	.internal {�am slfam 	ensl names}�uturelet
ext /
	.irp {�am slfam 	ensl symbol}�uturelet
ext /,{�am slfam 	ensl values}�uturelet
ext /unhbox voidb@x hbox to 1.5em{hskip 0pt plus 0.25fil minus 0.25fil .hss .hss .hskip 0pt plus 0.5fil minus 0.5fil }{}
	.irpc {�am slfam 	ensl symbol}�uturelet
ext /,{�am slfam 	ensl values}�uturelet
ext /unhbox voidb@x hbox to 1.5em{hskip 0pt plus 0.25fil minus 0.25fil .hss .hss .hskip 0pt plus 0.5fil minus 0.5fil }{}
	.lcomm {�am slfam 	ensl symbol}�uturelet
ext / , {�am slfam 	ensl length}�uturelet
ext /
	.lflags
	.line {�am slfam 	ensl line-number}�uturelet
ext /
	.linkonce [{�am slfam 	ensl type}�uturelet
ext /]
	.ln {�am slfam 	ensl line-number}�uturelet
ext /
	.mri {�am slfam 	ensl val}�uturelet
ext /
	.list
	.long {�am slfam 	ensl expressions}�uturelet
ext /
	.macro
	.nolist
	.octa {�am slfam 	ensl bignums}�uturelet
ext /
	.org {�am slfam 	ensl new-lc}�uturelet
ext / , {�am slfam 	ensl fill}�uturelet
ext /
	.p2align[wl] {�am slfam 	ensl abs-expr}�uturelet
ext /, {�am slfam 	ensl abs-expr}�uturelet
ext /, {�am slfam 	ensl abs-expr}�uturelet
ext /
	.previous
	.popsection
	.print {�am slfam 	ensl string}�uturelet
ext /
	.protected {�am slfam 	ensl names}�uturelet
ext /
	.psize {�am slfam 	ensl lines}�uturelet
ext / , {�am slfam 	ensl columns}�uturelet
ext /
	.purgem {�am slfam 	ensl name}�uturelet
ext /
	.pushsection {�am slfam 	ensl name}�uturelet
ext / , {�am slfam 	ensl subsection}�uturelet
ext /
	.quad {�am slfam 	ensl bignums}�uturelet
ext /
	.rept {�am slfam 	ensl count}�uturelet
ext /
	.sbttl "{�am slfam 	ensl subheading}�uturelet
ext /"
	.scl {�am slfam 	ensl class}�uturelet
ext /
	.section {�am slfam 	ensl name}�uturelet
ext / (COFF version)
	.section {�am slfam 	ensl name}�uturelet
ext / (ELF version)
	.set {�am slfam 	ensl symbol}�uturelet
ext /, {�am slfam 	ensl expression}�uturelet
ext /
	.short {�am slfam 	ensl expressions}�uturelet
ext /
	.single {�am slfam 	ensl flonums}�uturelet
ext /
	.size (COFF version)
	.size {�am slfam 	ensl name}�uturelet
ext / , {�am slfam 	ensl expression}�uturelet
ext / (ELF version)
	.sleb128 {�am slfam 	ensl expressions}�uturelet
ext /
	.skip {�am slfam 	ensl size}�uturelet
ext / , {�am slfam 	ensl fill}�uturelet
ext /
	.space {�am slfam 	ensl size}�uturelet
ext / , {�am slfam 	ensl fill}�uturelet
ext /
	.stabd, .stabn, .stabs
	.string "{�am slfam 	ensl str}�uturelet
ext /"
	.struct {�am slfam 	ensl expression}�uturelet
ext /
	.subsection {�am slfam 	ensl name}�uturelet
ext /
	.symver
	.tag {�am slfam 	ensl structname}�uturelet
ext /
	.text {�am slfam 	ensl subsection}�uturelet
ext /
	.title "{�am slfam 	ensl heading}�uturelet
ext /"
	.type {�am slfam 	ensl int}�uturelet
ext / (COFF version)
	.type {�am slfam 	ensl name}�uturelet
ext / , {�am slfam 	ensl type description}�uturelet
ext / (ELF version)
	.uleb128 {�am slfam 	ensl expressions}�uturelet
ext /
	.val {�am slfam 	ensl addr}�uturelet
ext /
	.version "{�am slfam 	ensl string}�uturelet
ext /"
	.vtable_entry {�am slfam 	ensl table}�uturelet
ext /, {�am slfam 	ensl offset}�uturelet
ext /
	.vtable_inherit {�am slfam 	ensl child}�uturelet
ext /, {�am slfam 	ensl parent}�uturelet
ext /
	.weak {�am slfam 	ensl names}�uturelet
ext /
	.word {�am slfam 	ensl expressions}�uturelet
ext /
	Deprecated Directives

	Machine Dependent Features
	ARC Dependent Features
	Options
	Syntax
	Special Characters
	Register Names

	Floating Point
	ARC Machine Directives
	Opcodes

	AMD 29K Dependent Features
	Options
	Syntax
	Macros
	Special Characters
	Register Names

	Floating Point
	AMD 29K Machine Directives
	Opcodes

	ARM Dependent Features
	Options
	Syntax
	Special Characters
	Register Names

	Floating Point
	ARM Machine Directives
	Opcodes

	D10V Dependent Features
	D10V Options
	Syntax
	Size Modifiers
	Sub-Instructions
	Special Characters
	Register Names
	Addressing Modes
	@WORD Modifier

	Floating Point
	Opcodes

	D30V Dependent Features
	D30V Options
	Syntax
	Size Modifiers
	Sub-Instructions
	Special Characters
	Guarded Execution
	Register Names
	Addressing Modes

	Floating Point
	Opcodes

	H8/300 Dependent Features
	Options
	Syntax
	Special Characters
	Register Names
	Addressing Modes

	Floating Point
	H8/300 Machine Directives
	Opcodes

	H8/500 Dependent Features
	Options
	Syntax
	Special Characters
	Register Names
	Addressing Modes

	Floating Point
	H8/500 Machine Directives
	Opcodes

	HPPA Dependent Features
	Notes
	Options
	Syntax
	Floating Point
	HPPA Assembler Directives
	Opcodes

	ESA/390 Dependent Features
	Notes
	Options
	Syntax
	Floating Point
	ESA/390 Assembler Directives
	Opcodes

	80386 Dependent Features
	Options
	AT&T Syntax versus Intel Syntax
	Instruction Naming
	Register Naming
	Instruction Prefixes
	Memory References
	Handling of Jump Instructions
	Floating Point
	Intel's MMX and AMD's 3DNow! SIMD Operations
	Writing 16-bit Code
	AT&T Syntax bugs
	Specifying CPU Architecture
	Notes

	Intel i860 Dependent Features
	i860 Notes
	i860 Command-line Options
	SVR4 compatibility options
	Other options

	i860 Machine Directives
	i860 Opcodes
	Other instruction support (pseudo-instructions)

	Intel 80960 Dependent Features
	i960 Command-line Options
	Floating Point
	i960 Machine Directives
	i960 Opcodes
	callj
	Compare-and-Branch

	M32R Dependent Features
	M32R Options
	M32R Warnings

	M680x0 Dependent Features
	M680x0 Options
	Syntax
	Motorola Syntax
	Floating Point
	680x0 Machine Directives
	Opcodes
	Branch Improvement
	Special Characters

	M68HC11 and M68HC12 Dependent Features
	M68HC11 and M68HC12 Options
	Syntax
	Floating Point
	Opcodes
	Branch Improvement

	MIPS Dependent Features
	Assembler options
	MIPS ECOFF object code
	Directives for debugging information
	Directives to override the ISA level
	Directives for extending MIPS 16 bit instructions
	Directive to mark data as an instruction
	Directives to save and restore options

	picoJava Dependent Features
	Options

	Hitachi SH Dependent Features
	Options
	Syntax
	Special Characters
	Register Names
	Addressing Modes

	Floating Point
	SH Machine Directives
	Opcodes

	SPARC Dependent Features
	Options
	Enforcing aligned data
	Floating Point
	Sparc Machine Directives

	Z8000 Dependent Features
	Options
	Syntax
	Special Characters
	Register Names
	Addressing Modes

	Assembler Directives for the Z8000
	Opcodes

	VAX Dependent Features
	VAX Command-Line Options
	VAX Floating Point
	Vax Machine Directives
	VAX Opcodes
	VAX Branch Improvement
	VAX Operands
	Not Supported on VAX

	v850 Dependent Features
	Options
	Syntax
	Special Characters
	Register Names

	Floating Point
	V850 Machine Directives
	Opcodes

	Reporting Bugs
	Have you found a bug?
	How to report bugs

	Acknowledgements
	GNU Free Documentation License
	Index

