
LogicLoaderTM User’s Manual Logic PN: 70000016 

 

 

 

LogicLoader™ User’s Manual 
User’s Manual for Logic’s SOM Development Kits 
(LogicLoader Version 2.3) 

 

Logic Product Development 
Published: January 2003 
Last Revised: July 2007 

 

 

 

 

 

 

 

This file contains source code, ideas, techniques, and information (the Information) which are Proprietary and Confidential 
Information of Logic Product Development, Inc.  This information may not be used by or disclosed to any third party except under 
written license, and shall be subject to the limitations prescribed under license. 

No warranties of any nature are extended by this document. Any product and related material disclosed herein are only furnished 
pursuant and subject to the terms and conditions of a duly executed license or agreement to purchase or lease equipments. The 
only warranties made by Logic Product Development, if any, with respect to the products described in this document are set forth in 
such license or agreement. Logic Product Development cannot accept any financial or other responsibility that may be the result of 
your use of the information in this document or software material, including direct, indirect, special or consequential damages. 

Logic Product Development may have patents, patent applications, trademarks, copyrights, or other intellectual property rights 
covering the subject matter in this document. Except as expressly provided in any written agreement from Logic Product 
Development, the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other 
intellectual property. 

The information contained herein is subject to change without notice. Revisions may be issued to advise of such changes and/or 
additions. 

© Copyright 2003-2007, Logic Product Development, Inc. All Rights Reserved. 

Logic Product Development All Rights Reserved i 



LogicLoaderTM User’s Manual Logic PN: 70000016 

REVISION HISTORY 

REV EDITOR REVISION DESCRIPTION LoLo Ver. APPROVAL DATE 

A Bill O’Donnell Release -- BOD 01/21/03 

B Bruce Rovner Release -- BR 05/05/03 

C Bruce Rovner Release -- BR 07/24/03 

D Hans Rempel Edit and Section 6 Update; LoLo Ver. 1.2.0 -- HAR 09/15/03 

E James Wicks Document Format and Edit -- JAW 09/30/03 

F Bruce Rovner Preliminary Release LogicLoader Version 1.4 -- BR 03/31/04 

G Bruce Rovner 
Document Edit/ Test Commands Update 
LogicLoader Version 1.5/ MOT Pilot Release -- JAW 06/08/04 

H Mike Aanenson  Added SOM to Acronyms; Added: mem-copy -- JMC 08/30/04 

I James Wicks Attached SOM Cover page -- JAW 10/14/04 

J 

Robin Bhattacharyya, 
Bruce Rovner, 
Michael Erickson, 
Hans Rempel 

Updated for LogicLoader 2.0 release; 
Command list is now in separate document -- ME 06/03/05 

K Bruce Rovner 

Section 5 “Program Loading”: Added recommendation to user not to erase 
LogicLoader's RAM space until boot string has been recovered; Added 
description of exec command boot string structure -- HAR 08/22/05 

L 
Jed Anderson,  
Eric Nelson 

Sections 6.3.3 and 8.1.2: Fixed incorrect section numbers within the text 
referring to ‘Section 0’ to ‘Section 7’ and ‘Section 5’ respectively. 
Created Section 4 to support NAND secondary flash and booting from 
NAND. These features have been added to LoLo 2.2.0. 2.2.0 MT 07/12/06 

M 

Hans Rempel,  
Peter Barada,  
Jed Anderson 

- Updated for LogicLoader 2.3.0 release. 
- Section 5.1: Added section describing TFTP usage. 
- Added Note to flat memory addressing subsection. 
- Section 5.3.2: Updated ‘exec’ command for use with an ARM Linux kernel. 
- Section 6: Scripting information – added ‘\n’ requirement to end parser. 
- Section 6.3.1: Updated information about scripts used with the 'echo' 
command being stored in the serial EEPROM. 
- Added Section 6.4 “Settings that Affect Scripts” 
- Section 6.6.1.2: Added further explanatory information 
- Section 6.6.1.4: Added explanation of what happens when a new variable 
is referenced. 
- Section 6.6.1.6: Added info on 'if' and 'while' statements 
- Section 6.6.1.8: Added more operators supported by the shell, added 
section no Immediate expression evaluation 
- Added Section 6.6.1.9 “Escaping the variable character” 
- Section 9.1: Added Linux example 
- Section 9.2: Added information for NAND 
- General formatting and grammatical changes 2.3.0 MT 01/16/07 

N Jed Anderson 
- Section 4.5.5: Corrected description of ‘erase’ command to indicate the 
second argument is “number of blocks” not “end block” 2.3.0 JCA 04/13/07 

O Jed Anderson 

- Section 4.5.3: Corrected example in ‘burn’ command to include a B to 
specify the appropriate block location for the burn 
- General formatting and grammatical changes throughout 2.3.0 RGL 07/25/07 

Logic Product Development All Rights Reserved ii 



LogicLoaderTM User’s Manual Logic PN: 70000016 

Table of Contents 

1  Introduction to LogicLoader™ ............................................................................................................ 1 
1.1  Product Brief .................................................................................................................................... 1 
1.2  Acronyms ......................................................................................................................................... 2 
1.3  Technical Specifications ................................................................................................................... 2 
1.4  LogicLoader Command Description Manual .................................................................................... 2 
1.5  LogicLoader Addendums ................................................................................................................. 2 

2  LogicLoader (LoLo) .............................................................................................................................. 3 
2.1  LogicLoader Overview ..................................................................................................................... 3 
2.2  LogicLoader Basics .......................................................................................................................... 3 
2.3  Using LogicLoader for Debugging ................................................................................................... 3 
2.4  Manufacturing Advantages with LoLo .............................................................................................. 3 

3  The LogicLoader Shell (losh) .............................................................................................................. 5 
3.1  Losh Overview ................................................................................................................................. 5 
3.2  Losh Basics ...................................................................................................................................... 5 

3.2.1  Using Losh ................................................................................................................................. 5 
4  NAND Devices and LogicLoader ......................................................................................................... 7 

4.1  Block Addressing ............................................................................................................................. 7 
4.2  Bad Blocks ....................................................................................................................................... 7 
4.3  NAND Programming ........................................................................................................................ 7 

4.3.1  Skip Bad Block Method ............................................................................................................. 7 
4.3.2  YAFFS Overview ....................................................................................................................... 8 

4.4  NAND Boot Process ......................................................................................................................... 8 
4.4.1  NoLo .......................................................................................................................................... 8 
4.4.2  BL1 ............................................................................................................................................ 8 
4.4.3  BL2 ............................................................................................................................................ 9 
4.4.4  Loading from the YAFFS Boot Partition .................................................................................... 9 
4.4.5  Loading with the Skip Bad Block Algorithm ............................................................................... 9 
4.4.6  Error Handling ........................................................................................................................... 9 
4.4.7  LoLo ......................................................................................................................................... 10 
4.4.8  Manufacturer Bad Block Scan ................................................................................................. 10 
4.4.9  YAFFS Boot Partition .............................................................................................................. 10 

4.5  Losh and NAND ............................................................................................................................. 11 
4.5.1  NAND Addressing ................................................................................................................... 11 
4.5.2  add-yaffs .................................................................................................................................. 12 
4.5.3  burn .......................................................................................................................................... 12 
4.5.4  config ....................................................................................................................................... 12 
4.5.5  erase ........................................................................................................................................ 12 
4.5.6  info ........................................................................................................................................... 12 
4.5.7  update ...................................................................................................................................... 13 

5  Program Loading ................................................................................................................................ 14 
5.1  Understanding the ‘load’ Command ............................................................................................... 14 

5.1.1  Using TFTP as a Source ......................................................................................................... 16 
5.2  Understanding the ‘burn’ Command .............................................................................................. 17 
5.3  Understanding the ‘jump’ and ‘exec’ Commands .......................................................................... 17 

5.3.1  The ‘jump’ Command .............................................................................................................. 17 
5.3.2  The ‘exec’ Command ............................................................................................................... 17 
5.3.3  Command Example Using ‘load’ and ‘burn’ with ‘jump’ or ‘exec’ ............................................ 18 

5.4  Understanding the ‘update’ Command .......................................................................................... 19 
6  Scripting .............................................................................................................................................. 20 

6.1  Scripting Overview ......................................................................................................................... 20 
6.1.1  Scripting Rules ........................................................................................................................ 20 

6.2  Launching Scripts ........................................................................................................................... 20 

Logic Product Development All Rights Reserved iii 



LogicLoaderTM User’s Manual Logic PN: 70000016 

Logic Product Development All Rights Reserved iv 

6.3  Persistent Script Storage ............................................................................................................... 20 
6.3.1  Persisting Scripts with the Echo Command ............................................................................ 21 
6.3.2  Serial EEPROM Scripts ........................................................................................................... 21 
6.3.3  Configuration Block Scripts ..................................................................................................... 21 

6.4  Settings that Affect Scripts ............................................................................................................. 21 
6.5  Using Boot-time Scripting............................................................................................................... 22 

6.5.1  Boot-time Script Guidelines ..................................................................................................... 22 
6.5.2  Boot Script Magic Strings ........................................................................................................ 22 
6.5.3  Exiting a Boot Script ................................................................................................................ 22 
6.5.4  Understanding the Echo Command ........................................................................................ 22 
6.5.5  Boot-time Script Example ........................................................................................................ 22 

6.6  Conditional Scripting and Variables ............................................................................................... 23 
6.6.1  Variables .................................................................................................................................. 23 

7  Video Interface .................................................................................................................................... 28 
7.1  Video Interface Overview ............................................................................................................... 28 
7.2  Using the Video Interface after Initialization................................................................................... 28 

8  Configuration Block ........................................................................................................................... 29 
8.1  Configuration Block Overview ........................................................................................................ 29 

8.1.1  Initializing ................................................................................................................................. 29 
8.1.2  Scripting ................................................................................................................................... 29 
8.1.3  Video ........................................................................................................................................ 29 
8.1.4  Serial with the Configuration Block .......................................................................................... 29 
8.1.5  Ethernet ................................................................................................................................... 30 

9  YAFFS (Yet Another Flash File System) .......................................................................................... 31 
9.1  YAFFS Overview ............................................................................................................................ 31 
9.2  Working with YAFFS in LogicLoader ............................................................................................. 31 

9.2.1  Developing a Partition Scheme ............................................................................................... 31 
9.2.2  Formatting YAFFS Partitions ................................................................................................... 32 
9.2.3  Adding YAFFS Type Partitions ................................................................................................ 32 
9.2.4  Mounting the Partition .............................................................................................................. 33 
9.2.5  Accessing YAFFS Partitions in an OS .................................................................................... 33 

9.3  Summary ........................................................................................................................................ 33 
Appendix: LwIP License Agreement ....................................................................................................... 35 



LogicLoaderTM User’s Manual Logic PN: 70000016 

Table of Figures and Tables 

Figure 3.1: 'ls' Command Columns ............................................................................................................... 6 
Figure 4.1: NAND Boot Process ................................................................................................................... 8 
Figure 4.2: Location of LoLo Using the Skip Bad Block Algorithm ............................................................... 9 
Table  4.1: Status LED Indicators ............................................................................................................... 10 
Figure 5.1: Downloading to RAM ................................................................................................................ 15 
Figure 5.2: Downloading to Flash ............................................................................................................... 16 
 

Logic Product Development All Rights Reserved v 



LOGICLOADER™ :: HIGHLIGHTS:

+ Ships standard on all Logic  
System on Modules

+ Conditional scripting

+ YAFFS (flash file system)

LOGIC WEBSITE :: DESIGN RESOURCES:

+ Logic Technical Support :  
http://www.logicpd.com/support/

+ Technical Discussion Group :  
http://www.logicpd.com/support/tdg/

+ Frequently Asked Questions (FAQ) :  
http://www.logicpd.com/support/faq/

+ For more information contact Logic Sales : 
product.sales@logicpd.com

LogicLoader™ is a bootloader/monitor program developed 
by Logic Product Development that initializes an embedded 
device and is capable of loading both operating systems and 
applications. In addition, LogicLoader provides a full suite 
of commands for hardware configuration, in-field device 
management, hardware debug, manufacturing, and test.

PRODUCT BRIEF: 

Logic embedded product solutions

LOGICLOADER™ Bootloader/Monitor

Customizable and extendable at the user level, LogicLoader is built 
for multiple processor platforms (ARM, ColdFire, i.MX, SH, XScale), 
with support for both CompactFlash FAT and YAFFS file systems. 
LogicLoader contains a fully integrated TCP/IP stack—with DHCP 
and TFTP support—providing network bootstrap support. Greater 
customization to your specific needs can be achieved through 
conditional scripting and the ability for LogicLoader to drive LCD 
displays to show custom splash screens, making LogicLoader an 
excellent tool to fast forward your embedded product design.

embedded product solut ions
411 N. Washington Ave. Suite 400
Minneapolis, MN 55401
T : 612.672.9495   F : 612.672.9489
I : www.logicpd.com  

PN: 70000023 Rev H© 2006 Logic Product Development. All rights reserved.

Product Features
Operating System (OS) Bootstrap

+ Load multiple OSes (Microsoft Windows Embedded CE, 
Linux, etc.)

+ Load an OS from CompactFlash, resident flash array, 
serial connection, or Ethernet connection

+ Fully configure a hardware platform for the OS
+ Activate custom software functions to initialize hardware 

before the OS starts
+ Power-on self test capability

In-field Device Management

+ Modify boot actions at run-time
+ Remote device management eases debugging and 

upgrading

Hardware Debug

+ Link in custom test functions to verify custom hardware
+ Use a familiar UNIX-like interface for debugging the 

device
+ Ethernet-based download and debug interface for 

Windows Embedded CE

Custom Applications 
+ Use LogicLoader to load, burn, and jump to any custom 

embedded application

Manufacturing and Test 
+ Add in custom functional test software for your specific 

device needs
+ Take advantage of the fast Ethernet connectivity to 

reduce manufacturing test time

Download Formats 
+ SREC
+ ELF
+ BIN
+ RAW



LogicLoaderTM User’s Manual Logic PN: 70000016 

Logic Product Development All Rights Reserved 2 

1.2 Acronyms 
API  Application Programming Interface 
BIN  Microsoft BIN file format 
CPLD  Complex Programmable Logic Device 
CF  CompactFlash® 
DHCP  Dynamic Host Configuration Protocol 
EEPROM Electrically Erasable Programmable Read-Only Memory 
ELF  Executable Linkable Format 
FAT  File Allocation Table 
GPIO  General Purpose Input Output 
GNU  GNU is not UNIX 
IO  Input/Output 
IP  Internet Protocol 
JTAG  Joint Test Action Group  
LAN  Local Area Network 
LwIP  Lightweight implementation of the TCP/IP protocol stack 
OS  Operating System 
RAM  Random Access Memory 
RAW  RAW file format, e.g. absolute binary 
RISC  Reduced Instruction Set Computer 
SOC  System on Chip 
SOM  System on Module 
SRAM  Static Random Access Memory 
SREC  Motorola S-Record file format 
TCP/IP  Transport Control Protocol/Internet Protocol 
TFTP  Trivial File Transfer Protocol 
YAFFS  Yet Another Flash File System 

1.3 Technical Specifications 

Please refer to the component specifications and data sheets applicable to your SOM: 

■ SOM IO Controller Specification 
■ SOM Hardware Specification 
■ Applicable Processor Manual 

1.4 LogicLoader Command Description Manual 

For a complete description of LogicLoader’s ‘losh’ commands, please see the LogicLoader 
Command Description Manual available from Logic’s downloads page 
http://www.logicpd.com/auth/. The LogicLoader Command Description Manual explains how to 
use each LogicLoader command. 

1.5 LogicLoader Addendums 

Logic has written a SOM-specific addendum for each SOM that runs LogicLoader. LogicLoader 
Addendums are located under the “User Manuals” heading on Logic’s Registered Products 
downloads page. 



LogicLoaderTM User’s Manual Logic PN: 70000016 

Logic Product Development All Rights Reserved 3 

2 LogicLoader (LoLo) 

2.1 LogicLoader Overview 

The LogicLoader (LoLo) is a bootloader/firmware-monitor program developed by Logic Product 
Development. LogicLoader is designed to initialize an embedded device, load and bootstrap an 
operating system, and provide a low-level firmware monitor with debugging functionality. 

2.2 LogicLoader Basics 

Most operating systems rely on an underlying bootloader to initialize a device from its reset 
condition. In general, operating systems are designed with the assumption that the system will be 
in a specific pre-defined state before the operating system is started. Some example assumptions 
might be that system RAM has been initialized and cleared, processor interrupts are disabled, 
and a timer has been initialized to provide a system tick for the OS. The LogicLoader program 
initializes Logic Product Development’s SOM platforms and prepares them for use by an 
operating system. 

Another basic function of LogicLoader is the capability to upgrade device software (flash memory, 
CPLD firmware, serial EEPROM contents) after deployment. This “in-field upgrade” ability 
requires a bootloader program that is capable of loading software images from various sources 
as well as committing loaded images to non-volatile memory. LogicLoader implements this by 
giving the system the ability to load system software from flash memory, a CompactFlash storage 
card, a Local Area Network, or even from a device attached to the system’s serial port. 
LogicLoader also has the ability to upgrade an existing operating system residing in system flash. 

LogicLoader was developed to fulfill the need for an OS and processor independent bootloader 
that can interface with a variety of hardware transports. The GNU development tool chain used to 
build LogicLoader is cross-platform capable. 

2.3 Using LogicLoader for Debugging 

LogicLoader implements a feature-rich firmware monitor. Included with LoLo is the LogicLoader 
shell, also known as “losh.” Losh is a command interpreter providing control over system state 
prior to loading an OS image. It has features such as command recall, command-line editing, 
automated control via scripting, and diagnostic routines. 

Losh includes many commands designed specifically to help software and hardware engineers 
debug low-level interfaces. For example, formatted data in arbitrary memory locations can be 
read from, and written to, by using the 'x' and 'w' commands. Other commands run specific tests 
designed to verify Logic’s SOM hardware platforms. All commands return a value to the 
command line that can be used to conditionally evaluate the command result. Refer to the 
LogicLoader Command Description Manual for a complete description of available commands. 

Developers may code their own test programs using the provided GNU development tool chain 
and use the LogicLoader to load and run their software. This provides the ability to verify and 
debug hardware interfaces without the overhead of building, downloading, and running large 
operating system images.  

2.4 Manufacturing Advantages with LoLo 

LogicLoader can be used with a desktop software utility to load a device’s system software on the 
manufacturing line. This utility is customizable to suit your desired transfer mechanism and 
additional needs. LogicLoader can also be augmented with functional test software to completely 
verify a device before it leaves the manufacturing line. Here is an example scenario: LogicLoader 



LogicLoaderTM User’s Manual Logic PN: 70000016 

Logic Product Development All Rights Reserved 4 

could launch a device’s final functional test at the end of a manufacturing line, and then load the 
device’s final software image before packaging. Contact Logic for more information on using 
LogicLoader to streamline manufacturing. 



LogicLoaderTM User’s Manual Logic PN: 70000016 

Logic Product Development All Rights Reserved 5 

3 The LogicLoader Shell (losh) 

3.1 Losh Overview 

Losh is a command interpreter similar to those found in Unix environments. Losh implements a 
rudimentary network and file system command set, enhanced with custom diagnostic and 
memory manipulation commands for debugging hardware. 

Developers familiar with a Unix-like command line interface should find the losh implementation 
familiar and easy to work with. Many of losh’s commands are patterned after their Unix 
counterparts and share the same syntax. 

3.2 Losh Basics 

Losh uses a standard output stream (stdout). By default, stdout refers to a SOM’s debug serial 
port. The output of any command that displays information to stdout (i.e., the ‘cat’ command) can 
be viewed using the terminal emulation program connected to the SOM’s debug serial port. 
Likewise, the standard input stream (stdin) by default also refers to the SOM’s debug serial port.  

The LogicLoader Shell includes a virtual file system that uses standard Unix path names. The 
highest-level (or root) directory is designated by the identifier ‘/’. A special sub-directory of the 
root with the name ‘dev’ is used to enumerate and interact with system’s various peripherals and 
their associated device drivers. 

3.2.1 Using Losh 

The losh shell includes a basic command line editing feature and a command history feature. This 
provides users with a quick way to repeat commands. Using the up and down arrow keys, the 
user can scroll through the list of previously executed commands. When a desired command is 
displayed, press the return key to repeat the command. The right and left arrow keys allow a user 
to position the cursor as desired on the current line so that text can be modified, deleted, or 
inserted at the appropriate location without having to “backspace” the entire line to access the 
portion of the command or command set being entered. 

Losh includes a user help feature through the ‘help’ command. Typing ‘help’ followed by any 
command name at the losh prompt will display the command’s syntax, usage, and an example. 
This may be especially helpful to users who are just becoming familiar with the LogicLoader shell. 

Commands may be run in the background by adding a ‘&’ suffix. 

3.2.1.1 Understanding the ‘ls’ Command 

The ‘ls’ command lists the contents of the current directory. A sample terminal output that results 
from running the ‘ls’ command is shown below: 

  losh> ls  

        :                           NK.BIN    4268863 

    D :                                DOC               0 

    D :                             BOOT               0 

In this example, the columns displayed when the ‘ls’ command is executed are (in order from left 
to right): entity attribute, entity name, and entity size. See Figure 3.1, below. 



LogicLoaderTM User’s Manual Logic PN: 70000016 

Logic Product Development All Rights Reserved 6 

  losh> ls  
        :                           NK.BIN    4268863
    D :                                DOC               0
    D :                             BOOT               0 

entity attribute                   entity name                  entity size
 

Figure 3.1: 'ls' Command Columns 

The first column, entity attribute, can be blank, “D”, “S”, “R”, “r” or “H”. A blank field indicates a 
normal attribute, a “D” indicates a directory attribute, an “S” indicates a device driver attribute, an 
“R” indicates a read-only attribute, an “r” indicates reserved bits are set, and an “H” indicates a 
hidden attribute. 

The second column, entity name, is simply the name of the entity as exists on the file system. 
This name should be used, with attention to case, in any commands referencing the entity. 

The third column, entity size, indicates the size (in bytes) of the entity on the storage device. 



LogicLoaderTM User’s Manual Logic PN: 70000016 

Logic Product Development All Rights Reserved 7 

4 NAND Devices and LogicLoader  

LoLo supports NOR and NAND type flash devices. NOR flash devices are linear, memory-
mapped devices that can be read in a similar manner to any RAM device. Programming NOR 
devices requires a programming algorithm. LoLo supports NOR flash devices conforming to the 
Common Flash Interface (CFI) specification, which includes most NOR flash devices used today. 
NAND flash devices are block devices that require read and write algorithms. As of the time of 
writing this document, there is no common algorithm used to read or write to NAND flash devices; 
every manufacturer requires a unique algorithm. 

4.1 Block Addressing 

NAND devices use an addressing scheme of block, page, and sector. A block is the smallest 
erasable chunk of memory, whereas pages and sectors are merely mechanisms that describe the 
addressing hierarchy (blocks are made up of pages; pages are made up of sectors). The number 
of blocks, pages, and sectors will be unique for each particular NAND flash device. Some NAND 
devices may not have any sectors, in which case addressing is performed using only block and 
page. 

NAND devices currently come in two flavors where addressing is concerned: small page and 
large page. Small page devices have a page size of 512 bytes; large page NAND devices have a 
page size of 2048 bytes. Larger page sizes tend to offer higher densities of NAND flash. 

Whether the smallest chunk of data is addressed using a page or a sector, there is a spare area 
associated with that smallest chunk. This spare area will be 16 bytes for small page type devices 
and 64 bytes for large page devices. The spare area is used by software to manage: 

■ Error correction codes to correct single bit errors and to identify two or more bit errors. 
■ Manufacturer bad block identification. 
■ Flash file system metadata. The specific metadata will be unique to the particular flash file 

system used. LoLo dedicates a portion of the NAND spare area to YAFFS. 

4.2 Bad Blocks 

NAND devices can have bad blocks when shipped from the manufacturer, as well as bad blocks 
that develop over time. Most NAND blocks can be erased and rewritten on the order of 100,000 
cycles before potentially going bad. Bad blocks are defined as having two or more bit errors 
within the block. Single bit errors need to be corrected with software using an ECC algorithm. 
Most NAND manufacturers state that the device integrity decays with every erase/program cycle. 
However, some third-party studies indicate that data integrity may decay with a large number of 
read cycles as well. LoLo and YAFFS assume data integrity does not decay with reads. YAFFS 
assumes writes may lose integrity over time, so NAND writes are all verified and two or more bit 
errors will result in YAFFS marking the block bad. 

4.3 NAND Programming 

NAND devices are programmed by sending commands to the device. Similar to NOR devices, 
programming NAND consists of an erase phase that fills the entire block with ones and a program 
phase that writes zeros to the device. Since NAND is a block device, a flash file system is needed 
to manage where data is read and written in order to avoid bad blocks on the device. 

4.3.1 Skip Bad Block Method 

A common algorithm used to program flash devices in production is the “skip bad block method.” 
This is a flash file system in its simplest form. As the name implies, data is simply written 



LogicLoaderTM User’s Manual Logic PN: 70000016 

Logic Product Development All Rights Reserved 8 

contiguously on the device from low numbered blocks to higher numbered blocks, while skipping 
any bad blocks (as marked by the manufacturer). This algorithm works well for programming a 
NAND device once, but is not capable of removing and rewriting portions of the written image. 

4.3.2 YAFFS Overview 

The YAFFS file system has been optimized for NAND use. YAFFS is able to: 

■ Identify and avoid bad blocks using an ECC algorithm. 
■ Load leveling, where erasing and writing is averaged out among all the blocks of the device, 

and no one block is erased and written repeatedly. 
■ Manage metadata, such as directories and links. 

More information regarding how YAFFS operates in LoLo can be found in the “YAFFS” Section of 
this document. 

4.4 NAND Boot Process 

With conventional NOR flash, a typical boot process consists of an XIP boot loader that 
configures the system, loads the OS, and starts the OS. When using NAND flash, the only 
memory available after reset is the first page or sector (depending on the NAND controller and 
NAND device). A boot loader typically requires more code space than what is available in one 
page or sector. Because of this, the boot process requires an initial boot loader to load the main 
boot loader. In other words, booting from NAND requires one or more boot loader phases (see 
Figure 4.1). 

 
Figure 4.1: NAND Boot Process 

4.4.1 NoLo 

The job of NoLo (NAND Loader) is to load and execute LoLo. NoLo always resides at block zero, 
and uses no more than one block of the NAND device. Block zero is guaranteed by the NAND 
device manufacturer to be a good block for the life of the device.  



LogicLoaderTM User’s Manual Logic PN: 70000016 

Logic Product Development All Rights Reserved 9 

4.4.2 BL1 

Typically out of reset, the NAND controller will copy the first sector out of the first block and page 
of the NAND device to internal CPU SRAM. This is the “BL1” phase in Figure 4.1. The CPU 
program counter is then placed at the start of this SRAM memory space. This starts execution of 
NoLo. NoLo will begin by copying the remainder of the NAND flash block to internal CPU SRAM. 
When the entire NAND block is in SRAM, NoLo will continue to the “BL2” phase. 

4.4.3 BL2 

From this phase there is enough XIP memory to setup chip selects, SDRAM, clocks, and load 
LoLo. To locate LoLo, NoLo will scan the YAFFS boot partition for a file called “lboot.elf”. If this 
file is not found, NoLo will assume the NAND device has been programmed with a skip bad block 
algorithm. 

4.4.4 Loading from the YAFFS Boot Partition 

The YAFFS boot partition will reside in the NAND flash device starting at block one. The boot 
partition is named “/lboot” in the file system. If a file named “lboot.elf” is found in the partition, that 
file is loaded into SDRAM and executed. The “lboot.elf” file does not necessarily have to be LoLo. 
Any file can be placed in the boot partition and named “lboot.elf”. For the sake of this document, 
however, we will assume LoLo is in the boot partition. Any files not named “lboot.elf”, are ignored. 

4.4.5 Loading with the Skip Bad Block Algorithm 

If no valid files are found in a YAFFS boot partition, NoLo will use the skip bad block algorithm 
(see Section 4.3.1) to begin loading a 512kB image starting at 1 MB plus 1 block offset of the 
NAND device. This location would be just after the YAFFS boot partition had a boot partition 
existed (see Figure 4.2). NoLo will then use the start address of the image as the entry point into 
the program. This is the case when the SOM has been programmed in production. 



LogicLoaderTM User’s Manual Logic PN: 70000016 

Logic Product Development All Rights Reserved 10 

NoLo

YAFFS boot partition

Production LoLo image using skip bad
block algorithm

Block 0

Block 1

1MB device
offset from

block 1

512kB

1MB

1 block

 
Figure 4.2: Location of LoLo Using the Skip Bad Block Algorithm 

4.4.6 Error Handling 

NoLo currently does not have a shell, so error handling is accomplished using the two status 
LEDs on the baseboard. When NoLo is loading LoLo from NAND, the status 1 and 2 LEDs will 
alternately flash. If NoLo has a problem booting the system, one of the LED sequences below will 
indicate the specific failure: 

Status 1 LED state Status 2 LED state Problem 

Flashing Off 
NoLo could not find a bootable 
file. 

Off Flashing 

NoLo found a bootable file, but 
could not complete loading the 
file. 

Flash in unison with status 2 LED Flash in unison with status 1 LED 
NoLo could not initialize the 
NAND device. 

Flash alternating with status 2 
LED 

Flash alternating with status 1 
LED 

NoLo is loading the bootable file 
normally. 

Table  4.1: Status LED Indicators 

Note: LoLo also uses the status 1 and 2 LEDs. NoLo’s use of the status LEDs will differ by speed 
or by pattern. For example, on the PXA270-10, NoLo will alternately flash status 1 and 2 LEDs; 
LoLo will also alternately flash status 1 and status 2 LEDs under normal operation. However, 
LoLo will flash the LEDs noticeably slower than how NoLo will flash the LEDs. 

4.4.7 LoLo 

A RAM version of LoLo resides in the YAFFS boot partition. LoLo is considered to be “BL3” in 
Figure 4.1. When LoLo starts, LoLo will check if it has been loaded from a YAFFS boot partition. 
If so, it will check to see if the device has been previously scanned for any manufacturer marked 
bad blocks. 



LogicLoaderTM User’s Manual Logic PN: 70000016 

Logic Product Development All Rights Reserved 11 

4.4.8 Manufacturer Bad Block Scan 

The NAND device manufacturer will identify blocks that are not reliable. The manufacturer will 
then mark these blocks as bad by writing certain values at certain locations within the block. If 
one of these bad blocks is ever erased, there is no way to recover the bad block information. So 
LoLo and YAFFS will track this bad block information and avoid using or erasing any blocks that 
are bad. 

Unfortunately, not every manufacturer marks bad blocks the same way and YAFFS may also use 
a different method to indicate bad blocks. For this reason, at startup LoLo will scan for bad blocks 
as marked by the manufacturer and mark those blocks as bad using the YAFFS bad block 
marker. This only needs to occur once in the lifetime of the SOM. Once a NAND device has been 
scanned and marked with the YAFFS bad block marker, LoLo will never scan the NAND device 
again. To indicate that a NAND device has been scanned, LoLo will mark block zero as bad. 
Marking block zero as bad does not mean that block zero is actually bad. In fact, block zero is 
guaranteed to be good for the life of the NAND device by the manufacturer. This mark merely 
indicates the device has been scanned and re-marked with the YAFFS bad block markings. This 
block zero mark will be used the next time LoLo starts to indicate that LoLo does not need to scan 
the NAND device again. 

4.4.9 YAFFS Boot Partition 

After LoLo has verified the bad block scanning has been performed, it will automatically mount 
the boot partition of the NAND device. The boot partition always begins at block one and will 
occupy no less than 1 MB of space on the NAND device. Since LoLo is approximately 256kB, the 
1 MB partition will allow room for LoLo to grow, as well as offer space for other LoLo system files, 
such as a config block. 

If LoLo finds that the boot partition does not contain an “lboot.elf” file, it will assume that it has 
been booted from a production image. LoLo will then copy the first 512kB after the boot partition 
(see Figure 4.2) to a file named “lboot.elf” in the boot partition. This new “lboot.elf” file will be used 
to boot from in the future. 

Note: The “lboot.elf” file may not actually require the full 512kB. LoLo copies this many bytes to 
accommodate any future growth of LoLo. When a user updates LoLo with the ‘update’ command, 
the actual file size of LoLo will be reflected in the directory. 

Keep in mind that all the files in the boot partition can be manipulated just like any other YAFFS 
partition. Files can be copied, removed, and renamed. This gives the user unique abilities such as 
switching between two versions of LoLo in the boot partition by simply renaming one of the LoLo 
files to “lboot.elf”. Or a user could switch config blocks by copying any one of a list of config files 
from a user partition to the boot partition. 

4.5 Losh and NAND 

The LogicLoader shell supports NAND by extending functionality to some of the existing Losh 
commands. This section outlines areas that are unique to NAND. More detailed information for 
each command can be found in the LogicLoader Command Description Manual. 

4.5.1 NAND Addressing 

The NAND device uses a block, page, and sector to identify memory locations. In contrast, the 
NOR flash device uses a flat memory-mapped address. Losh will support both schemes when 
addressing the NAND device. For a flat memory address, losh takes the address as an offset into 
the device and calculates the block, page, and sector from that address. Losh will then use this 
calculated block, page, and sector internally when communicating to the NAND device. This 



LogicLoaderTM User’s Manual Logic PN: 70000016 

Logic Product Development All Rights Reserved 12 

scheme gives the user the ability to use the same losh commands with the same arguments on 
any SOM with any NAND device. Without this ability, the losh command line arguments would 
need to change according to the specific NAND device installed, because each NAND device has 
different block, page, and sector sizes. 

4.5.1.1 Using Flat Memory Map Addressing 

To use the flat memory map reference, use a 32-bit address just as if the NAND device were 
RAM or NOR flash. For example: 

losh> add-yaffs nandy /dev/nand0 0x120000 0x3E80000 

When considering the PXA270-10 NAND Card Engine, there are 0x20000 bytes per block, so the 
example above creates a YAFFS partition from block 9 (start = 9 x 0x20000 = 0x120000) to block 
509 (length = 500 x 0x20000 = 0x3E80000). 

Note: On some boards, such as the i.MX31-10 SOM-LV, flat memory addressing to access 
NAND will fail because the NAND device is accessible only through its NAND controller. In these 
situations Block References are required. 

4.5.1.2 Using Block Reference 

To directly reference a block on the NAND device, use a “B” in front of the block number. For 
example: 

losh> add-yaffs nandy /dev/nand0 B9 B500 

Similar to the example in 4.5.1.1, this creates a YAFFS partition starting at block 9 that is 500 
blocks in size. The “B” in front of the 9 and the 500 indicate the 9 and 500 are block values. 

4.5.2 add-yaffs 

The ‘add-yaffs’ command is extended to support NAND by specifying the device type 
(/dev/nandx), a start block argument, and a total number of blocks argument. For example:  

add-yaffs foo nand B9 B503 

This example will create a YAFFS partition named “foo” in the first NAND flash device starting at 
block 9 and spanning 503 blocks. 

4.5.3 burn 

The ‘burn’ command has been extended for use with NAND devices. The ‘burn’ command will 
burn the NAND device using the skip bad block algorithm (see Section 4.3.1). In this case the 
‘burn’ command will require a device name and start block number. The data to be burned is data 
that has previously been loaded with the ‘load’ command. For example: 

burn /dev/nand0 B9 

4.5.4 config 

The ‘config’ command behaves nearly the same as for a SOM with NOR flash. The command line 
arguments are the same. The difference is, rather than creating a memory-mapped config block 
in the NOR flash device, an “lboot.cfg” file is created in the YAFFS boot partition. 



LogicLoaderTM User’s Manual Logic PN: 70000016 

Logic Product Development All Rights Reserved 13 

4.5.5 erase 

The ‘erase’ command has been expanded to include erasing NAND blocks. Care must be taken 
when erasing NAND blocks so as not to erase a YAFFS partition or NoLo in block zero. Any 
attempt to do so will require confirmation for erasing to continue. When using the ‘erase’ 
command with a NAND device, the arguments required are: start block, number of blocks to 
erase, and device name. Blocks with bad block markers will not be erased. For example:  

erase B9 B503 /dev/nand0 

There is an optional argument “force”. The force argument will force the ‘erase’ command to 
erase all blocks in the specified address range regardless if they have been marked bad. Without 
the “force” argument, the ‘erase’ command will skip bad blocks in an effort to preserve bad block 
information. Extreme caution must be used when using the “force” argument. If a block has been 
marked bad by the NAND manufacturer or by YAFFS, and the block is erased with the “force” 
argument, there is no way to ever recover the bad block information. For example:  

erase B9 B20 /dev/nand0 force 

4.5.6 info 

The ‘info’ command has expanded to include information regarding the NAND device and YAFFS 
boot partition; specifically using the ‘info mem’ and ‘info YAFFS’ arguments. The ‘info mem’ 
command now includes geometry data for all NAND flash devices. The geometry information 
includes: 

■ Base address of NAND 
■ Number of blocks 
■ Number of pages 
■ Number of sectors 
■ Sector size 
■ The overall NAND device byte size 
■ Bad block list 

The ‘info yaffs’ command has been expanded to include YAFFS partition table information. 

4.5.7 update 

There command line arguments for the ‘update’ command remain the same. However, the 
‘update’ command has been modified to support updating NoLo and updating LoLo in the YAFFS 
partition. When either of these update files are sent to the SOM via the ‘update’ command, LoLo 
will identify the update as NoLo or LoLo, and then program the NAND part as needed. 



LogicLoaderTM User’s Manual Logic PN: 70000016 

Logic Product Development All Rights Reserved 14 

5 Program Loading 

Using LogicLoader to download any application, operating system, or update to a device requires 
an understanding of the interaction between the ‘load’, ‘burn’, ‘jump’, and ‘exec’ commands. The 
purpose of this section is to describe each individual command, and explain the interaction 
between these commands. 

5.1 Understanding the ‘load’ Command 

The purpose of the ‘load’ command is to transfer an executable image to a device. The image 
must be in one of the following supported formats: ELF, SREC, RAW, or BIN. The ‘load’ 
command uses information inherent to the supported formats (or as entered as part of the 
command for RAW format) to determine where the downloaded image should be stored in the 
device’s memory. The ‘load’ command stores the destination address of the downloaded image 
for later use by the ‘burn’ command, and stores the program start address for later use by the 
‘jump’ or ‘exec’ commands. For RAW format, ‘load’ will store the destination address as the 
program start address. The image must be destined to reside in either flash memory, system 
RAM, or on-chip SRAM.  

If an image is destined for system RAM or on-chip SRAM, the ‘load’ command stores the image 
directly to its run-time location. Refer to Figure 5.1 for a graphic representation of this process. 



LogicLoaderTM User’s Manual Logic PN: 70000016 

Logic Product Development All Rights Reserved 15 

 

Host PC 

System RAM 
external to the SoC 

LoLo code, variable, 
and stack space 

Open RAM 

end of LoLo 

When using the ‘load’ command to transfer an application destined for RAM, LoLo arranges 
the sections of the image directly in system memory. LoLo uses the application's file format 
record information to determine where the sections should be placed. Sections are placed in 
the memory location the file records specify.  If the destination address overlaps LogicLoader 
reserved memory (code, variable or stack space), LogicLoader will abort the load. 

 
Figure 5.1: Downloading to RAM 

If a downloaded application is destined for flash memory, the ‘load’ command transfers the file 
into a temporary RAM buffer on the device. The transferred image may be programmed into flash 
using the ‘burn’ command after the transfer is complete. Refer to Figure 5.2 for a graphic 
representation of this process. 



LogicLoaderTM User’s Manual Logic PN: 70000016 

Logic Product Development All Rights Reserved 16 

 

Host PC 

LoLo 

Config. Block 

Open 

Flash Memory System RAM 
external to SoC

LoLo code, variable, 
and stack space 

Open RAM

When using the ‘load’ command to transfer an application destined for flash memory, 
LogicLoader uses available system RAM as a buffer where the downloaded image is 
temporarily stored. The end result of this command is a copy of the downloaded image 
being placed in RAM. 

Flash Memory System RAM 
external to SoC 

Lolo code, variable, 
and stack space 

The downloaded 
image has been 

temporarily 
stored in RAM.

The ‘burn’ command is used to complete the transfer of the image to flash memory. 
This command analyzes the downloaded application and determines where in flash 
memory the image is to be saved. If the application will overlap flash block zero or a 
valid configuration block, the user is notified and confirmation is required before 
continuing. Otherwise, the ‘burn’ command erases the relevant blocks of flash and 
programs the downloaded application into the flash array. 

end of LoLo

end of LogicLoader 

LoLo 

Downloaded 
image's final 
destination 

Config. Block 

 
Figure 5.2: Downloading to Flash 

5.1.1 Using TFTP as a Source  

A file located on a TFTP server can be used as the source for the following commands: ‘load’, 
‘cat’, ‘hd’, ‘md5sum’, and ‘cp’. 

The general form for a TFTP file is “/tftp/<server>:<filename>:<port>” where <server> is the IP 
address of the server, <filename> is the name of the file on the TFTP server (including 
subdirectory identifiers), and <port> is the optional port number the TFTP server is listening to. If 
nothing is specified for the port, it is assumed the TFTP server is using the standard port 69. 



LogicLoaderTM User’s Manual Logic PN: 70000016 

Logic Product Development All Rights Reserved 17 

For example, to load the elf file “image.elf” from a TFTP server accessible at IP address 
192.168.3.6 that is listening on the standard port, the following command would be used: 

losh> load elf /tftp/192.168.3.6:data-file 

Another example would be to load the Platform Builder file “NK.bin” from the TFTP server at IP 
address 10.1.240.10 listening on port 3001: 

losh> load bin /tftp/10.1.240.10:NK.bin:3001 

5.2 Understanding the ‘burn’ Command 

The ‘burn’ command should only be used following the successful download of a binary image 
destined for flash. If the ‘load’ command is used to download a flash image, the image is 
temporarily stored in a reserved section of system RAM. The ‘burn’ command is responsible for 
actually erasing the necessary blocks and programming the downloaded image into flash at the 
destination address. Refer to Figure 5.2 for more information. 

5.3 Understanding the ‘jump’ and ‘exec’ Commands 

LogicLoader provides two different ways to transfer execution to your application. The ‘jump’ 
command is more useful for launching and debugging an application that will be relying on 
LogicLoader or an operating system to setup the runtime environment. The ‘exec’ command is 
more useful for launching an application such as an operating system that will take over total 
control of the hardware and the environment. The differences between the ‘jump’ and ‘exec’ 
command are that ‘exec’ can pass a command line argument to the program being executed and 
that ‘exec’ disables interrupts, the cache, and the MMU (if present). 

5.3.1 The ‘jump’ Command 

The ‘jump’ command is an assembly-level jump to the starting instruction of a program. If ‘jump’ is 
executed without a parameter, LogicLoader will jump to the program start address of the last 
program loaded to system RAM (if any). If an address is passed in, the ‘jump’ command will jump 
to the specified address. After a ‘jump’ command is performed, LogicLoader continues to execute 
in the background. LogicLoader does not set up a run-time environment for a program, rather the 
program inherits LogicLoader’s current environment. It is the software engineer’s responsibility to 
ensure that the hardware is setup in the desired manner. 

This example may be used when writing a function that LogicLoader will jump to: 

int my_jump_function(void); 

5.3.2 The ‘exec’ Command 

The ‘exec’ command is an assembly-level jump to the starting instruction of a program that will 
pass in three arguments. If ‘exec’ is executed without a parameter, LogicLoader will jump to the 
program start address of the last program loaded to system RAM (if any) and pass in a pointer to 
an empty string. If both an address and command line are specified, the ‘exec’ command will 
jump to the specified address and pass a pointer to the command line provided. The ‘exec’ 
command will disable interrupts, the cache, and the MMU (if present) prior to executing the jump.  

The ‘exec’ command passes the command line argument via a pointer to memory that has been 
allocated from LogicLoader’s heap. Any application or OS code must preserve the command line, 
or finish using the command line arguments, before reclaiming LogicLoader’s memory space for 
its own use. Because the ‘exec’ command shuts off the MMU, the image must have a virtual 



LogicLoaderTM User’s Manual Logic PN: 70000016 

Logic Product Development All Rights Reserved 18 

address that maps directly to its physical address since the entry address that ‘exec’ jumps to will 
always be a physical address. 

This example may be used when writing a function that LogicLoader will exec to: 

int my_exec_function(unsigned int arg1, unsigned int arg2, char *cmd_string); 

The first two arguments, arg1 and arg2, have different values depending on the flags given to 
'exec'. The third argument will be a pointer to the command line as described above. 

To boot an ARM Linux kernel, use the ‘-t’ argument with the ‘exec’ command. This causes arg1 to 
get zero, arg2 is then the architecture ID, and arg3 is a pointer to an ATAG structure that 
contains, among other things, a pointer to the cmd_string. 

5.3.3 Command Example Using ‘load’ and ‘burn’ with ‘jump’ or ‘exec’  

An application program that is written for the Zoom Development Kit can be linked to reside in 
flash or ram. 

First, let’s assume that we have built an application for flash. To properly store this program in 
flash, issue the ‘load’ command followed by the ‘burn’ command. Make note of the program start 
address (for example: 0x400d0100) so that you can jump to the program after a reset. Once the 
image has been burned to flash, you may enter the ‘jump’ or ‘exec’ command specifying 
0x400d0100 as the argument at anytime but you can take a shortcut if you have not reset the 
board since the ‘load’ command will store the program start address. A valid sequence would be 
as follows: 

1. losh> load elf 
This transfers the image to the device. 

2. losh> burn 
This programs the image into flash at the destination address stored by the ‘load’ command. 

3. losh> jump or exec 
This will work because the ‘load’ command saved the program's flash start address. Both the 
burn destination address and the program start address will be valid until the next reset or the 
next use of the ‘load’ command. 

After a reset the program may be launched at any time using the ‘jump’ or ‘exec’ commands with 
a specific destination address: 

losh> jump 0x400d0100  

or 

losh> exec 0x400d0100 – 

Next, let’s assume that we have built an application for RAM. To properly load and execute an 
application out of RAM, issue the ‘load’ command followed by the ‘jump’ or ‘exec’ command. A 
valid sequence would be as follows: 

1. losh> load elf 
This transfers the image to the device. 

2. losh> jump or exec 
This will work because the ‘load’ command stored the program start address. The program 
start address will be valid for this program until the next reset, or the next use of the ‘load’ 
command. 



LogicLoaderTM User’s Manual Logic PN: 70000016 

Logic Product Development All Rights Reserved 19 

Keep in mind that the option of specifying the program start address, as shown in the flash 
example, is available as well. 

5.4 Understanding the ‘update’ Command 

Logic deploys software or firmware updates in the form of update files (.upd extension). To deploy 
an update file, use the ‘update’ command. If a filename/path parameter is not passed to the 
'update' command, the system will assume that stdin is being used to send the update file to the 
system. When the update command is activated, after the system has received the .upd file, it 
automatically launches the file and performs the actions required.   

Update files are comprised of self-extracting applications that, once activated by the update 
command, run and perform whatever function the application was coded to carry out. This allows 
a single “update” command to perform a variety of different actions from a self-contained file with 
minimal user interaction. 

The procedure to update LogicLoader with the ‘update’ command differs from the ‘load/burn’ 
procedure in this way: only one command implements the entire update process without any user 
interaction or confirmation. 



LogicLoaderTM User’s Manual Logic PN: 70000016 

Logic Product Development All Rights Reserved 20 

6 Scripting 

6.1 Scripting Overview 

Scripts can be used to automate any commands or command sequences entered on the 
command line. Scripts are comprised of a simple text file with a listing of commands that the user 
wishes to automatically execute in sequence.  

6.1.1 Scripting Rules 

Basic scripting rules are as follows: 

■ Enter commands into the script file with the same syntax used on the losh command line; 
■ Separate commands with a semi-colon or a new line; 
■ End the script with a ‘\n’ (this tells the parser to stop parsing the file and instructs the 

command interpreter to start executing the script); 
■ Use the command ‘exit’ to end the script (this tells the command interpreter to stop executing 

the script). 

6.2 Launching Scripts 

The process of launching a script manually or post-boot time employs the ‘source’ command. For 
example: the command ‘source /cf_card/myscript.txt’ will execute the script stored in the file 
"myscript.txt" on a mounted CompactFlash card. For more information on the source command, 
please reference the LogicLoader Command Description Manual document. 

The process of auto-launching scripts on startup is referred to as “boot-time scripting.” Boot-time 
scripts are the primary mechanism used for automatically launching an OS or application when 
deploying a product to the field. Their capability is the same as other scripts, with their ability to 
be automatically run at startup differentiating them from normal scripts. One can think of a boot-
time script fulfilling the same role as an “autoexec.bat” file commonly found on desktop operating 
systems. Boot-time script usage is described more thoroughly below. 

A third way to launch a script is to simply ‘send’ it to the system while LogicLoader is waiting at 
the losh prompt. If the script file is sent over the terminal emulator connection to the losh shell, 
the script will be entered on the command line as if typed in by the user. If the script being sent 
incorporates a carriage return at the end of the script, the command line will launch the script 
when it receives the carriage return. This type of script launching is primarily used during 
development when the developer wishes to send a number of development commands to 
LogicLoader in sequence. For example: a command sequence initializes the Ethernet interface, 
downloads a Windows CE OS image, and then launches the OS image with a specific command 
line. 

6.3 Persistent Script Storage 

In order for a script to persist across power cycles, the script must be stored to a local, non-
volatile memory device on the system. There are a number of different persistent storage 
locations that can be used to store a script on each system. The primary storage mechanisms 
supported by LogicLoader are the serial EEPROM, the resident flash array (dev/config or 
YAFFS), and the CompactFlash interface. Because different SOMs may not have one or more of 
these interfaces available in hardware, please refer to the individual SOM’s LogicLoader User’s 
Manual Addendum document for specific persistent storage interface support. 



LogicLoaderTM User’s Manual Logic PN: 70000016 

Logic Product Development All Rights Reserved 21 

6.3.1 Persisting Scripts with the Echo Command 

The 'echo' command can be used to store a script in the serial EEPROM or /dev/config. To 
include a new-line in the first argument to 'echo', it is necessary to enclose the whole argument in 
double-quotes. Remember to end the script by inserting ‘\n’ before the end quotes to instruct the 
parser to stop parsing the file. Since scripts stored in the serial EEPROM or /dev/config are not 
stored as actual files, it is important that any previous information in the serial EEPROM or 
/dev/config is not interpreted as part of the script. Check the contents of the serial EEPROM or 
/dev/config with ‘cat’, or ‘hd’ to verify that the contents are as desired. If not, the ‘erase’ command 
should be used to erase any previous information before the ‘echo’ command is executed. 

6.3.2 Serial EEPROM Scripts 

The system’s serial EEPROM is one persistent storage area that supports the storage and 
execution of scripts. The serial EEPROM is the primary boot-time script storage location. Boot-
time scripts stored to the serial EEPROM are typically fairly short and may re-direct to a 
secondary script on an interface capable of a larger storage capacity. 

To store a script to the serial EEPROM interface (/dev/serial_eeprom), use the ‘echo’ command. 
An example of using the ‘echo’ command to store information to the serial EEPROM is shown 
below: 

echo "LOLOmount fatfs /cf; source /cf/B.BAT; exit;\n" /dev/serial_eeprom 

6.3.3 Configuration Block Scripts 

The system’s configuration block is another persistent storage area that supports the storage and 
execution of scripts. The configuration block is located in system flash memory and is the 
secondary boot-time script storage location on systems with serial EEPROM. 

Store a script to the configuration block interface (/dev/config) by using the ‘echo’ command or 
the ‘config S’ command. Here is an example of using the ‘echo’ command to store a script to the 
configuration block: 

echo "LOLOmount fatfs /cf; source /cf/B.BAT; exit;\n" /dev/config 

Note: The configuration block must be initialized before using it for scripting commands. For more 
information on how to create and use the configuration block, please see Section 8. 

6.4 Settings that Affect Scripts 

The 'set' command can be used to modify several internal variables affecting script execution. 
These function similarly to the Unix shell scripting analog, where a '-' causes the following flags to 
be set, and a '+' causes them to be unset. It is highly recommended during development to set 
the '-w' flag to receive warnings about common scripting errors. 

The flags available are: 

■ e Exit script execution immediately when commands fail; 
■ n Read commands, but don't execute; ignored by interactive shells; 
■ q Don't print LoLo error messages; 
■ u Exit on expansion of unset variables; 
■ v Echo input lines as they are read; 
■ w Print warnings for possible errors; 
■ x Echo all user commands before executing them. 



LogicLoaderTM User’s Manual Logic PN: 70000016 

Logic Product Development All Rights Reserved 22 

6.5 Using Boot-time Scripting 

It is possible to execute a script automatically at startup. This is useful for making the device jump 
into an operating system or other program when powered-on without requiring manual command-
line input. This functionality can be described as being equivalent to the system automatically 
calling the ‘source’ command on one of the boot-capable devices. 

6.5.1 Boot-time Script Guidelines 

All of the commands available in LogicLoader are also available to boot-time scripts. As in normal 
scripts, a semi-colon must be used to separate commands and the exit command must be used 
to terminate a boot-time script. 

In order for a script to be boot-capable, the script must be stored in a boot-capable location and 
must contain the necessary “magic” string prefix. A boot-time script may reside either in the on-
board serial EEPROM or in the flash-based configuration block. The order of boot-time execution 
is first the EEPROM, then the configuration block. In order to differentiate between auto-booting 
scripts and non auto-booting, LogicLoader checks the first four bytes of the boot-capable devices 
to see if they contain a "magic" string indicating that the following script should run automatically.   

6.5.2 Boot Script Magic Strings 

The "magic" string for LogicLoader is "LOLO" for silent execution or “VOLO” for verbose script 
execution. If the string “LOLO” prefixes the boot script, the script’s commands and terminal output 
will be completely silent. By using “LOLO” as the prefix, it is possible to fully boot the system 
without ever sending any information out the debug serial port. If “VOLO” is used as the boot 
script prefix, the boot script commands, return codes, and other “normal” information is displayed 
via the serial port as if the script was running post-boot time. 

6.5.3 Exiting a Boot Script 

A common need is to abort the execution of a boot script in order to exit into the command line for 
additional debugging, development, or simply to change the boot script. The primary way to 
accomplish this is by holding the ‘q’ key down in a terminal emulator program attached to the 
device’s debug serial port. 

The system does pause for one/half of a second to read from debug serial port to determine if an 
abort request is being made. Some of Logic’s SOM products implement an external mode line 
that allows LogicLoader to ignore the assertion of the ‘q’ key – thereby skipping the one/half 
second wait time and decreasing the overall boot time of the system when a boot script is 
desired. For more information on the hardware line that provides this functionality, check the 
LogicLoader User's Manual Addendum for your hardware 

6.5.4 Understanding the Echo Command 

The 'echo' command can be used to store a script in the serial EEPROM or /dev/config. The 
‘echo’ command only writes the number of bytes contained in the string. If the string to be written 
is shorter than the previous contents, the result of the echo will not be what is intended. Use the 
‘cat’ or ‘hd’ command to verify the contents of the serial EEPROM or /dev/config before using the 
‘echo’ command. 

6.5.5 Boot-time Script Example 

The following example creates a simple LoLo boot script that first mounts the CompactFlash card 
and then runs a second script “B.BAT” on the CompactFlash card that automates software. 



LogicLoaderTM User’s Manual Logic PN: 70000016 

Logic Product Development All Rights Reserved 23 

losh>echo "LOLOmount fatfs /cf; source /cf/B.BAT; exit;\n" /dev/serial_eeprom 

or 

losh>echo "LOLOmount fatfs /cf; source /cf/B.BAT; exit;\n" /dev/config 

6.6 Conditional Scripting and Variables 

6.6.1 Variables 

The LogicLoader’s shell supports the concept of shell variables. The syntax and usage of these 
variables are patterned after the BASH shell. 

6.6.1.1 Variable Names 

A variable name may be any sequence of letters, numbers, or the underscore token.  

6.6.1.2 Variable Assignment 

A variable is created and assigned a value by using the ‘=’ operator. For example: 

losh> foo = 1 

creates a new variable named ‘foo’ and assigns it the value of ‘1’. Once a variable has been 
created, it may be assigned a new value at any time by using the ‘=’ operator again. The right-
hand side of an assignment statement is not limited to a simple number; it can be a complex 
expression involving other variables. 

6.6.1.3 Internal Representation 

Variables are internally represented as strings. For example: 

losh> foo = 1 

internally points the variable ‘foo’ at a sequence of characters equivalent to: 0x31 0x00. Because 
variables are treated as strings, commands may be aliased as variables. For example: 

losh> e = echo 
losh> msg = “Hello World” 
losh> $e $msg 
Hello World 

Notice the quotes used to ignore white space. If the created variable will be assigned to more 
than one token, the tokens must be included in double-quotation marks. 

6.6.1.4 De-referencing a Variable 

To dereference a variable, that is, to access a variable’s assigned value, use the ‘$’ operator. For 
example: 

losh> foo = “Hello World” 
losh> echo $foo 
Hello World 



LogicLoaderTM User’s Manual Logic PN: 70000016 

Logic Product Development All Rights Reserved 24 

The ‘$’ operator causes the shell to substitute the variable with the string value assigned to it. In 
some cases, a variable’s assigned value will be converted into a numeric value. This occurs when 
the shell is evaluating a conditional expression. This is described in more detail below.  

If a variable is referenced that does not have a previous value, its value is assumed to be zero 
and a warning message is printed. 

Note: Enclosing a sequence of tokens within double-quotes binds them together into a single 
token. For example: 

losh> e = “echo Hello World” 
losh> $e 
echo Hello World: command not found 

will not work because the parser only evaluates the string once. Thus, instead of being split up 
into three distinct tokens, the double-quotes cause the tokens to be bound and treated as one. 

6.6.1.5 Built-in Variables 

The shell contains two built-in variables, ‘?’ and ‘@’. 

The ‘?’ variable is assigned to the return value of the last command executed. By convention, all 
shell commands return zero to indicate that it completed successfully and a non-zero error code 
to indicate a failure. To view a command’s return value, use the ‘echo’ command and the value of 
the ‘?’ variable. For example: 

losh> mount fatfs /cf   # Mount a FAT file system. 
losh> echo $?  # Display the value returned from the mount command. 

The ‘@’ variable is an auxiliary variable that is set by some commands. For instance, the ‘echo’ 
command sets this value to the number of characters that it wrote. Therefore: 

losh> echo “Hello” 
losh> echo $@ 
0x5 

The number ‘5’ is printed because the string “Hello” contains five characters. 

Please reference the LogicLoader Command Description Manual for specific command 
descriptions in order to learn which commands set the ‘@’ variable, and if so, the usage of these 
commands. 

6.6.1.6 Conditional Scripting 

LogicLoader’s shell supports an ‘if-else-endif’ programming construct as well as a ‘while’ 
construct. The syntax for an if-statement and an if-else statement is shown below: 

if (expression) 
 action 
endif 
 
 
if ( expression ) 
 action-1 
else 
 action-2 



LogicLoaderTM User’s Manual Logic PN: 70000016 

Logic Product Development All Rights Reserved 25 

endif 

Parentheses are not required around the expression, but they are encouraged to improve 
readability of the script. Similarly, tabs and new lines are not needed. The various elements of the 
construct may be separated by the ‘;’ operator if so desired. For example: 

losh> if expression echo “pass”; else echo “fail”; endif 
pass 

or 

losh> if expression echo “pass” 
 else echo “fail”; 
 endif 

The syntax for a ‘while’ statement is shown below: 

while ( expression ) 
 action 
done 

The expression is evaluated first. If the return is non-zero, then action is taken and control comes 
back to the expression evaluation. This is repeated until the expression evaluates to zero. 

Note that ‘if’ and ‘while’ statements can be nested. The following example calculates the greatest 
common divisor of the numbers stored in the variables ‘a’ and ‘b’, leaving the result in ‘a’: 

losh> while ($a .ne $b) { 
  if ($a .gt $b) { 
   a = $a - $b 
  } else { 
   b = $b - $a 
  } 
 done 

6.6.1.7 Expressions 

An expression is defined as a number or a combination of a logical operator and a number or 
numbers. If a variable has been defined and is being de-referenced in an expression, its value is 
converted to a number. An expression evaluates to true if the result is non-zero and false if the 
result evaluates to zero. Therefore, the simplest expressions would be: 

if ( 1 ) # evaluates to true. 
if ( 0 ) # evaluates to false. 

6.6.1.8 Using Shell Variables 

losh> foo=1 
losh> bar=0x0 
if ( $foo ) # evaluates to true. 
if ( $bar ) # evaluates to false. 

The other operators supported by the shell are listed below in order of decreasing precedence. 

 ‘-‘ ‘!’ ‘~’   unary minus, logical not, arithmetic not 
 ‘*’ ‘/’ ‘%’   multiplication, division, modulus 



LogicLoaderTM User’s Manual Logic PN: 70000016 

Logic Product Development All Rights Reserved 26 

 ‘+’ ‘-‘    addition, subtraction 
 ‘<<’ ‘>>’   left shift, right shift 
 ‘.lt’ ‘.le’ ‘.gt’ ‘.ge’  less than, less than or equal, greater than, greater than or equal 
 ‘.eq’ ‘.ne’    equality, inequality 
 ‘<’ ‘>’    less than, greater than 
 ‘==’ ‘!=’   equality, inequality 
 ‘$((‘ ‘))’   immediate evaluation open, immediate evaluation close 
 ‘^’    bitwise exclusive or 
 ‘|’    bitwise or 
 ‘&’    bitwise and 
 ‘&&’    logical and 
 ‘||’    logical or 

Note that the operators ‘==’, ‘!=’, ‘>’, ‘<’ apply to either strings or integers, but the evaluation is 
done as string comparisons. The operators ‘.eq’, ‘.ne’, ‘.lt’, ‘.le’, ‘.gt’, ‘.ge’ apply to either 
strings or integers, but each side of the expression must evaluate to numbers. 

Immediate expression evaluation: 

The immediate evaluation construct ‘$((‘ … ‘))’ is used when a command needs an immediate 
value In this case the expression contained in ‘$((‘ … ‘)) is immediately evaluated and returned as 
a number. For example, the ‘x’ command can not take an expression as its operand: 

losh> x /x 0x80200000 + 0x10 4 
error: x: wrong number of arguments 

Using the immediate evaluation construct ‘$((‘ … ‘))’ gives: 

losh> x /x $(( 0x80200000 + 0x10 )) 4 
0x80200010  04001000 eb000000 fe000001 40ea0003  ……………@ 

The following are all valid expressions that can be used as the right-hand side of an assignment, 
as an argument to a command (if enclosed in an immediate evaluation construct), or as the 
conditional expression in an ‘if’ or ‘while’ construct: 

1 & 0   # evaluates to zero 
1 | 0   # evaluates to one 
0x01 ^ 0x02  # evaluates to 0x3 
1 >= 2  # evaluates to zero 
0 .ge 1  # evaluates to zero 
1 + 3 * 5 ^ 7  # evaluates to 23 (reduces to 16 ^ 7) 

As mentioned above, the shell exports two built-in variables. These are ‘?’ and ‘@’. The variable 
‘?’ holds the return value of the last command executed. Therefore, constructs like the one below 
can prove to be very useful: 

mount fatfs /cf 
if ( $? ) 
 # Save current return values because ‘echo’ will overwrite them 
 s_q = $? 
 s_a = $@ 
 echo “Error, mount failed error codes: ” 
 echo $s_q 
 echo $s_a 
else 



LogicLoaderTM User’s Manual Logic PN: 70000016 

Logic Product Development All Rights Reserved 27 

 echo “Mounted FAT file system at point ‘/cf’” 
endif 

Note: In the case of an error, the values of the ‘?’ and ‘@’ variables are saved. This is because 
the first call to the ‘echo’ command will overwrite the value of those variables.  

6.6.1.9 Escaping the variable character 

If the ‘echo’ command is used to store a variable reference in a script, the ‘\’ operator must be 
used before that variable in order to defer evaluation of that variable until echoed. For example: 

echo “if ($a == 2) source bar;\n” /dev/config 

needs to be written as 

echo “if (\$a == 2) source bar;\n” /dev/config 

in order to prevent losh from evaluating the variable ‘a’ in the string before the echo call is used. 
This method applies to any string which must include a literal ‘$’ character. 

6.6.1.10 Comments 

In order to make it easy to self-document scripts, the shell recognizes and ignores comments. A 
comment begins with the character ‘#’ and extends to the end of the current line. 

6.6.1.11 Numbers 

The shell recognizes the following number formats: 

■ decimal 

□ contains the characters 0-9 
□ does not start with a zero 

■ octal 

□ contains the characters 0-7 
□ starts with a zero 

■ hexadecimal 

□ contains the characters; 0-9, a-f, or A-F 
□ starts with the sequence ‘0x’ or ‘0X’ 



LogicLoaderTM User’s Manual Logic PN: 70000016 

Logic Product Development All Rights Reserved 28 

7 Video Interface 

7.1 Video Interface Overview 

LogicLoader includes the following video commands to configure the video controller: 

■ video-clear - clears the default video screen (sets the frame buffer to a monolithic color) 
■ video-close - turns off and un-initializes the default video device 
■ video-fb - sets or displays the video frame buffer address 
■ video-init - connects and initializes default video device settings, but does not enable the 

controller 
■ video-off - turns off an initialized display 
■ video-on - turns on an initialized display 
■ video-open - connects and initializes default video device settings and enables the display 

controller (equivalent of video-init and video-on) 

7.2 Using the Video Interface after Initialization 

Once the display has been initialized with either the 'video-open' or the video-init' commands, any 
of the drawing commands can be used. The 'video-fb' command allows the user to change the 
frame buffer address.  

After executing the 'video-fb' command to change the frame buffer address, all drawing 
commands will use the new frame buffer address instead of the default. The 'video-init' command 
can be used to connect and initialize the video controller without enabling the video display. Then 
use the 'bitmap' command to draw to different areas in memory prior to using the 'video-on' 
command to turn on the display. A typical command sequence might look like the following:  

losh> video-init 7 16 
video-init display: width: 640 height: 480 bpp: 16 disp: 7 
losh> bitmap TEST1.BMP 0xc0400000 
losh> bitmap TEST2.BMP 0xc0600000 
losh> video-fb 0xc0400000 
losh> video-on 
.....other command sequences 
losh> video-fb 0xc0600000 
 
.....other command sequences 
losh> video-off 

If using the configuration block, up to eight uniquely named custom screen settings can be saved. 
The stored settings include the frame buffer address so that the frame buffer will be initialized to a 
user specified address upon executing the 'video-open' or 'video-init' command. The current 
frame buffer address can be ascertained by issuing the 'video-fb' command. 



LogicLoaderTM User’s Manual Logic PN: 70000016 

Logic Product Development All Rights Reserved 29 

8 Configuration Block 

8.1 Configuration Block Overview 

Logic has added an optional configuration block that is located in the first 64K of the second 256K 
block of flash, immediately following the location of LogicLoader. The purpose of the configuration 
block is to allow our customers the ability to store larger scripts, change the baud rate of the 
debug serial port, store default settings for the Ethernet, and save custom LCD controller settings. 
The script area accommodates 16Kbytes of script storage space, and the peripheral settings 
allow for up to eight different settings each to be saved for the video, Ethernet, and serial. Custom 
settings can be downloaded and saved, or pre-programmed at the factory.  

The configuration block is designed to be easily accessible from a customer’s application. The 
structure and field definition header files are available from Logic. Each section has its own 
checksum, and there is also a checksum and version id for the entire configuration block. It is 
possible to store additional customer-defined settings to the configuration block for later use by 
customer software. In order to do this, a custom configuration block must be created. Please 
contact Logic for more information. 

The configuration block is optional for most SOMs. Normal operation, with the default settings, is 
available to customers who do not wish to use the configuration block. 

8.1.1 Initializing 

The configuration block must be initialized on systems that have never implemented a 
configuration block. If, for some reason, the system’s configuration block needs to be cleared, this 
initialization step will also provide for that. 

Enter 'config CREATE' at the losh prompt to initialize (or re-initialize) the configuration block. The 
configuration block will be located in the 64K of flash immediately following the LogicLoader flash 
storage location. 

8.1.2 Scripting 

The default mode of the configuration block is scripting. Once the configuration block has been 
initialized, users can ‘cat’ and ‘source’ /dev/config in order to view or execute their script. The 
‘echo’ command may be used to create the script, or larger scripts can be downloaded and saved 
using the ‘config’ command with the ‘S’ option. The scripts in the configuration block can be boot 
scripts or ordinary scripts. For more information on scripting, please refer to Section 6. 

8.1.3 Video 

A customer may save up to eight custom LCD screen settings, including the frame buffer location, 
by using the ‘config’ command with the ‘V’ option. In order to store a custom setting, set up the 
controller as desired and then enter ‘config V screen_name X Y’ to store it (where X and Y are 
dimensions of the screen—e.g., 640 and 480). Once this configuration step is implemented, the 
system can use the command sequence ‘video-open screen_name depth” to use the new 
configuration.   

8.1.4 Serial with the Configuration Block 

A customer can change the baud rate of the debug port with the ‘B’ option. The setting will be 
stored under the debug serial port’s UART index, and will automatically be used after the next 
reset. Only valid settings will be allowed.  



LogicLoaderTM User’s Manual Logic PN: 70000016 

Logic Product Development All Rights Reserved 30 

8.1.5 Ethernet 

A customer may save a default Ethernet setting that consists of a MAC address, and IP address, 
a subnet mask, and a gateway.  

To accomplish this, set up the controller using the ‘ifmac’ and the ‘ifconfig’ commands, and then 
use the ‘config’ command ‘E’ option with an index (e.g., ‘config E 0’) to save the settings. The 
index used must correspond to the hardware name index used in the ifconfig command (e.g., 
sm0 – where 0 is the valid index).   

Use the default setting by typing ‘ifconfig sm0 /dev/config’ (where sm0 indicates index 0) to re-
load the values stored in the configuration block. In general, the MAC address is stored in the 
config block for viewing purposes only, and the actual MAC address used is accessed directly by 
the Ethernet chip out of its dedicated serial EEPROM. On SOMs without a serial_eeprom, the 
config block is required if the customer wishes to use the Ethernet feature from within 
LogicLoader.  

The configuration block allows storage for up to eight Ethernet interface configurations, but the 
config E command is only able to store information for SOM hardware that is supported by 
LogicLoader. 



LogicLoaderTM User’s Manual Logic PN: 70000016 

Logic Product Development All Rights Reserved 31 

9 YAFFS (Yet Another Flash File System) 

9.1 YAFFS Overview 

The acronym YAFFS stands for the phrase "Yet Another Flash Filing System.” YAFFS was 
developed by a company named Aleph One Limited and incorporated by Logic Product 
Development into the LogicLoader (LoLo) software program.  

Logic selected YAFFS to fill its file system requirements due to the flexible nature of the program, 
its licensing scheme, and the fact that it is available for Linux, Windows CE, and other operating 
systems. YAFFS also allows LogicLoader and an RTOS to view and modify the same partition. It 
also makes it easier for customers to work with embedded flash technology and perform in-field 
updates. As an example, in Linux it is customary to have the Linux kernel reside in /boot/vmlinux, 
so using the commands below allows LogicLoader to mount, load, and boot the Linux kernel from 
the partition that is accessible from the Linux kernel. 

losh> add-yaffs nand-root nand B9 B500 
losh> mount yaffs /nand-root 
losh> load elf /nand-root/boot/vmlinux 
losh> exec 

Note: The partition entries for YAFFS partitions are not persistent—they must be restored on 
each boot. However, the partitions and data remain persistent. 

9.2 Working with YAFFS in LogicLoader 

9.2.1 Developing a Partition Scheme 

The LogicLoader may mount up to four YAFFS partitions at a time. Customers should design a 
partitioning scheme which suits their individual needs. The following limits are imposed on 
partitions: 

■ Each partition must have a unique name. 
■ Each partition must exist on local flash accessible from LogicLoader’s '/dev/flashx' device file 

(where ‘x’ is an instance index). For example: /dev/flash0 or /dev/flash1. 
■ Each partition must span at least 4 physical flash blocks. 
■ A partition must not overlap the flash blocks that contain LogicLoader or its configuration 

block. For information about the location of these items, check the LogicLoader User's 
Manual addendum for your hardware. 

■ A partition (in NOR flash) has to be aligned on and exactly span the largest sector boundary 
found within the address range specified. 

For the remainder of this document, the following partitioning scheme for demonstration of NOR 
flash will be used: 

■ A partition named “boot” which contains a bitmap and operating system image and spans the 
address space below: 

□ * start:  0x000C0000 
□ * length: 0x00800000 (8 MBytes) 

■ A partition named “data” which contains customer specific data. 

□ * start:  0x00900000 
□ * length: 0x00400000 (4 MBytes) 



LogicLoaderTM User’s Manual Logic PN: 70000016 

Logic Product Development All Rights Reserved 32 

For boards with NAND devices, the following partition scheme for demonstration purposes will be 
used: 

■ A partition named “boot” which contains a bitmap and operating system image and spans the 
block range below: 

□ * start:  B10 
□ * length: B256 (8 MBytes, assuming 32KByte block size) 

■ A partition named “data” which contains customer specific data. 

□ * start: B266  (abuts boot partition) 
□ * length: B128 (4 MBytes, assuming 32KByte block size) 

9.2.2 Formatting YAFFS Partitions 

All file systems need to be formatted before they can be mounted. Because YAFFS was designed 
from the ground up to work with embedded flash technologies, it understands an 'erased' flash 
device to be both formatted and empty. To prepare your partition for mounting, simply use 
LogicLoader's 'erase' command to erase the area of flash where the partition is to be located. 

Using the example partition scheme in the “Developing a Partition Scheme” section, above, the 
partitions could be prepared for initial use by erasing the regions of the flash device spanned by 
them. 

For a NOR example (LH7A404-11 system address used): 

losh> erase 0x000C0000 0x00800000 
losh > erase 0x00900000 0x00400000 

For a NAND example: 

losh> erase B10 B256 /dev/nand0 
losh> erase B266 B128 /dev/nand0 

Warning: Erasing flash blocks that will be used for YAFFS partitions will erase everything in 
those areas of flash. It is not required to format the partition every time the device is rebooted. 
The partition should only be formatted when an entirely new YAFFS partition is created, or when 
the data on a stored partition needs to be completely erased. For NAND-based devices, the first 
few blocks of NAND (the actual number of blocks is dependent on the NAND device) are used to 
hold the ‘/lboot’ partition which is where LogicLoader resides. Modifying data in this partition can 
cause the board to fail to boot. 

9.2.3 Adding YAFFS Type Partitions 

LogicLoader maintains a partition table in RAM. Before a YAFFS partition can be mounted, it 
must be added to the partition table. To do this, the 'add-yaffs' command is used. The 'add-yaffs' 
command takes the following arguments: 

■ <name> a unique string which identifies the partition 
■ <type> type of flash device the partition resides on 
■ <start> the physical starting address of the partition 
■ <length> the length (in bytes) of the partition 

Continuing with the example partitions above, LogicLoader can be instructed to add the partitions 
by executing the commands as shown below (LH7A404-11 system address used): 



LogicLoaderTM User’s Manual Logic PN: 70000016 

Logic Product Development All Rights Reserved 33 

losh> add-yaffs boot nor 0x000C0000 0x00800000 
losh> add-yaffs data nor 0x00900000 0x00400000 

For NAND partitions, the numbers change to block addresses: 

losh> add-yaffs boot nand B10 B256 
losh> add-yaffs data nand B266 B128 

Note: The above steps must be performed every time LogicLoader boots. Because LogicLoader 
keeps the partition table in RAM, the existence and locations of YAFFS partitions (for both NAND 
and NOR) does not persist across resets or power cycles. 

9.2.4 Mounting the Partition 

To mount a partition in the partition table, the 'mount' command is used. That command takes the 
following arguments: 

■ <fstype> the type of file system being mounted (‘yaffs’ here) 
■ [drive addr] not used when mounting a YAFFS partition 
■ <point> the name of the YAFFS partition 

For example: 

losh> mount yaffs /boot 
losh> mount yaffs /data 

Of note is that the 'drive addr' argument is not used when mounting a YAFFS partition. Also of 
note is that the 'point' argument needs to correspond to the name of the partition (as defined by 
the add-yaffs command) preceded by a forward slash. LogicLoader needs to mount all YAFFS 
partitions at the root-directory level. Thus, a partition added using: 

'add-yaffs boot ...' 

will be mounted using: 

'mount ... /boot'. 

Note the absence of the '/' character during the 'add-yaffs' command and its presence during the 
'mount' command. 

9.2.5 Accessing YAFFS Partitions in an OS 

A key advantage of the read/write YAFFS file system capability at the LogicLoader level is the 
ability to share data stored in the file system with an OS environment. If an OS environment (e.g., 
Linux, Windows CE, VxWorks) implements YAFFS as an OS-accessible file-system, any files 
available to LogicLoader are also available to the OS, and vice-versa.   

This contributes to significant benefits in the areas of system software upgrades (including OS 
upgrades) splash screen changes, script modifications, and other boot-time data that may need 
to be updated. 

9.3 Summary 

To use the YAFFS file system within LogicLoader, follow these steps: 



LogicLoaderTM User’s Manual Logic PN: 70000016 

Logic Product Development All Rights Reserved 34 

1. Decide on a partitioning scheme. 
2. Format the partitions by erasing the associated flash blocks. 
3. Add the partitions to LogicLoader using the 'add-yaffs' command. 
4. Mount the partitions using the 'mount' command. 

Steps 3 and 4 must be repeated every time the system is booted. If the YAFFS partitions are 
frequently accessed, consider implementing steps 3 and 4 via a boot script. Step 2 only needs to 
be performed when creating a brand new partition or when the contents of an existing partition 
need to be completely erased. 

Note: a partition is persistent. Re-adding a partition at boot-time restores access to previously 
saved data. Flash blocks must be erased to permanently remove a partition; otherwise, it can be 
recovered across boots. 

Keep in mind the following when working with YAFFS and LogicLoader: 

■ Ensure that a partition name does not begin with a '/'. LogicLoader’s virtual file system uses 
the forward slash to indicate the root directory. 

■ Ensure partitions do not overlap each other, LogicLoader, or the configuration block. 
■ Ensure that a partition is erased before it is mounted for the first time. 



LogicLoaderTM User’s Manual Logic PN: 70000016 

Logic Product Development All Rights Reserved 35 

Appendix: LwIP License Agreement 

LogicLoader uses the open source LwIP stack for networking support. The LwIP license requires 
the inclusion of the following license to satisfy Condition #2 below: 

Copyright (c) 2001, 2002 Swedish Institute of Computer Science. All rights reserved. 

Redistribution and use in source and binary forms, with or without modification, are permitted 
provided that the following conditions are met: 

1.  Redistributions of source code must retain the above copyright notice, 
this list of conditions and the following disclaimer. 

2.  Redistributions in binary form must reproduce the above copyright 
notice, this list of conditions and the following disclaimer in the 
documentation and/or other materials provided with the distribution. 

3.  The name of the author may not be used to endorse or promote 
products derived from this software without specific prior written 
permission. 

THIS SOFTWARE IS PROVIDED BY THE AUTHOR “AS IS” AND ANY 
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY 
AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN 
NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, 
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF 
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, 
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE 
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY 
OF SUCH DAMAGE. 

This file is part of the lwIP TCP/IP stack. 

Author: Adam Dunkels <adam@sics.se> 


	1 Introduction to LogicLoader™
	1.1 Product Brief
	1.2 Acronyms
	1.3 Technical Specifications
	1.4 LogicLoader Command Description Manual
	1.5 LogicLoader Addendums

	2 LogicLoader (LoLo)
	2.1 LogicLoader Overview
	2.2 LogicLoader Basics
	2.3 Using LogicLoader for Debugging
	2.4 Manufacturing Advantages with LoLo

	3 The LogicLoader Shell (losh)
	3.1 Losh Overview
	3.2 Losh Basics
	3.2.1 Using Losh
	3.2.1.1 Understanding the ‘ls’ Command



	4 NAND Devices and LogicLoader 
	4.1 Block Addressing
	4.2 Bad Blocks
	4.3 NAND Programming
	4.3.1 Skip Bad Block Method
	4.3.2 YAFFS Overview

	4.4 NAND Boot Process
	4.4.1 NoLo
	4.4.2 BL1
	4.4.3 BL2
	4.4.4 Loading from the YAFFS Boot Partition
	4.4.5 Loading with the Skip Bad Block Algorithm
	4.4.6 Error Handling
	4.4.7 LoLo
	4.4.8 Manufacturer Bad Block Scan
	4.4.9 YAFFS Boot Partition

	4.5 Losh and NAND
	4.5.1 NAND Addressing
	4.5.1.1 Using Flat Memory Map Addressing
	4.5.1.2 Using Block Reference

	4.5.2 add-yaffs
	4.5.3 burn
	4.5.4 config
	4.5.5 erase
	4.5.6 info
	4.5.7 update


	5 Program Loading
	5.1 Understanding the ‘load’ Command
	5.1.1 Using TFTP as a Source 

	5.2 Understanding the ‘burn’ Command
	5.3 Understanding the ‘jump’ and ‘exec’ Commands
	5.3.1 The ‘jump’ Command
	5.3.2 The ‘exec’ Command
	5.3.3 Command Example Using ‘load’ and ‘burn’ with ‘jump’ or ‘exec’ 

	5.4 Understanding the ‘update’ Command

	6 Scripting
	6.1 Scripting Overview
	6.1.1 Scripting Rules

	6.2 Launching Scripts
	6.3 Persistent Script Storage
	6.3.1 Persisting Scripts with the Echo Command
	6.3.2 Serial EEPROM Scripts
	6.3.3 Configuration Block Scripts

	6.4 Settings that Affect Scripts
	6.5 Using Boot-time Scripting
	6.5.1 Boot-time Script Guidelines
	6.5.2 Boot Script Magic Strings
	6.5.3 Exiting a Boot Script
	6.5.4 Understanding the Echo Command
	6.5.5 Boot-time Script Example

	6.6 Conditional Scripting and Variables
	6.6.1 Variables
	6.6.1.1 Variable Names
	6.6.1.2 Variable Assignment
	6.6.1.3 Internal Representation
	6.6.1.4 De-referencing a Variable
	6.6.1.5 Built-in Variables
	6.6.1.6 Conditional Scripting
	6.6.1.7 Expressions
	6.6.1.8 Using Shell Variables
	6.6.1.9 Escaping the variable character
	6.6.1.10 Comments
	6.6.1.11 Numbers



	7 Video Interface
	7.1 Video Interface Overview
	7.2 Using the Video Interface after Initialization

	8 Configuration Block
	8.1 Configuration Block Overview
	8.1.1 Initializing
	8.1.2 Scripting
	8.1.3 Video
	8.1.4 Serial with the Configuration Block
	8.1.5 Ethernet


	9 YAFFS (Yet Another Flash File System)
	9.1 YAFFS Overview
	9.2 Working with YAFFS in LogicLoader
	9.2.1 Developing a Partition Scheme
	9.2.2 Formatting YAFFS Partitions
	9.2.3 Adding YAFFS Type Partitions
	9.2.4 Mounting the Partition
	9.2.5 Accessing YAFFS Partitions in an OS

	9.3 Summary

	Appendix: LwIP License Agreement

