
PN 1020107B Logic PD, Inc. All Rights Reserved. i

LogicLoader™ User Guide
(LogicLoader Version 2.5)

Logic PD // Products
Published: July 2011
Last revised: April 2012

This document contains valuable proprietary and confidential information and the attached file contains source code, ideas, and
techniques that are owned by Logic PD, Inc. (collectively “Logic PD’s Proprietary Information”). Logic PD’s Proprietary Information
may not be used by or disclosed to any third party except under written license from Logic PD, Inc.

Logic PD, Inc. makes no representation or warranties of any nature or kind regarding Logic PD’s Proprietary Information or any
products offered by Logic PD, Inc. Logic PD’s Proprietary Information is disclosed herein pursuant and subject to the terms and
conditions of a duly executed license or agreement to purchase or lease equipment. The only warranties made by Logic PD, Inc., if
any, with respect to any products described in this document are set forth in such license or agreement. Logic PD, Inc. shall have no
liability of any kind, express or implied, arising out of the use of the Information in this document, including direct, indirect, special or
consequential damages.

Logic PD, Inc. may have patents, patent applications, trademarks, copyrights, trade secrets, or other intellectual property rights
pertaining to Logic PD’s Proprietary Information and products described in this document (collectively “Logic PD’s Intellectual
Property”). Except as expressly provided in any written license or agreement from Logic PD, Inc., this document and the information
contained therein does not create any license to Logic PD’s Intellectual Property.

The Information contained herein is subject to change without notice. Revisions may be issued regarding changes and/or additions.

© Copyright 2012, Logic PD, Inc. All Rights Reserved.

LogicLoader v2.5 User Guide

PN 1020107B Logic PD, Inc. All Rights Reserved. ii

Revision History
REV EDITOR REVISION DESCRIPTION LoLo Ver. APPROVAL DATE

A EN -Initial Release 2.5.0 JCA 07/28/11

B SO, EN

-Throughout: General updates; Removed information on legacy syntax and config
block;
-Section 6.1.1: Corrected first command to include image.elf file name;
-Section 7.3.1: Removed references to /dev/config;
-Section 7.5.2: Removed references to external mode line for ignoring Q key, as this
functionality is no longer supported;
-Section 9.1: Added information on where CPU programming manuals can be found;
-Section 11.2: Added example output for the last command in the section;
-Section 12.3: Added note that LogicLoader can read/write FAT16 file systems, but
only read FAT32 file systems; Corrected command to create a read-only FATFS;
-Section 13.2.1: Corrected length of boot partition to 6 blocks and 384kB; Corrected
start block of data partition to 11 2.5.1 EN, DH 04/03/12

LogicLoader v2.5 User Guide

PN 1020107B Logic PD, Inc. All Rights Reserved. iii

Table of Contents
1 Introduction to LogicLoader™ .. 1

1.1 Overview .. 1
1.2 Differences between Versions 2.4 and 2.5 .. 1
1.3 Product Features .. 1
1.4 Acronyms ... 2
1.5 Technical Specifications... 2
1.6 LogicLoader v2.5 Command Description Manual .. 2
1.7 LogicLoader User Manual Addendums .. 2
1.8 LogicLoader Labs ... 2

2 LogicLoader .. 3
2.1 LogicLoader Overview ... 3
2.2 LogicLoader Basics .. 3
2.3 Using LogicLoader for Debugging ... 3
2.4 Manufacturing Advantages with LogicLoader .. 4

3 The LogicLoader Shell ... 5
3.1 LogicLoader Shell Overview .. 5
3.2 LogicLoader Shell Basics ... 5

3.2.1 Using the LogicLoader Shell .. 5
4 Flash Devices and LogicLoader.. 7

4.1 NOR Addressing .. 7
4.2 Booting from NOR .. 7
4.3 Booting from NAND .. 7
4.4 Booting from SD/MMC ... 7
4.5 NAND Addressing .. 7
4.6 NAND Bad Blocks .. 8
4.7 NAND Programming .. 8

4.7.1 Skip Bad Block Method ... 8
4.7.2 YAFFS Overview ... 8

5 Block Devices ... 10
5.1 Using Block Reference... 10
5.2 burn .. 10
5.3 dd ... 10
5.4 erase .. 11
5.5 info .. 11
5.6 update .. 12

6 Program Loading .. 13
6.1 Understanding the load Command .. 13

6.1.1 Using TFTP as a Source ... 14
6.2 Understanding the burn Command .. 15
6.3 Understanding the jump and exec Commands .. 15

6.3.1 The jump Command .. 15
6.3.2 The exec Command .. 15
6.3.3 Command Example Using load and burn with jump or exec .. 16

6.4 Understanding the update Command .. 17
7 Scripting .. 18

7.1 Scripting Overview ... 18
7.1.1 Scripting Rules... 18

7.2 Launching Scripts ... 18
7.3 Persistent Script Storage ... 18

7.3.1 Persisting Scripts with the echo Command ... 19
7.3.2 Serial EEPROM Scripts ... 19

7.4 Settings that Affect Scripts ... 19
7.5 Using Boot-time Scripting... 19

LogicLoader v2.5 User Guide

PN 1020107B Logic PD, Inc. All Rights Reserved. iv

7.5.1 Boot-time Script Guidelines ... 19
7.5.2 Exiting a Boot Script .. 20
7.5.3 Understanding the echo Command ... 20

7.6 Conditional Scripting and Variables ... 20
7.6.1 Variables .. 20
7.6.2 Conditional Scripting .. 23

8 Video Interface .. 27
8.1 Video Interface Overview ... 27
8.2 Using the Video Interface after Initialization... 27
8.3 Using a Custom Video Display .. 27

8.3.1 The video-add Command .. 28
9 CPU Pin Configuration ... 29

9.1 Pin IDs and Configuration .. 29
9.2 Disabling a Pin (DNU) .. 29
9.3 Reconfiguring a Pin .. 29

10 The LogicLoader Setup lboot.sup File ... 31
10.1 Setup File Name .. 31
10.2 Setup File Keys .. 31
10.3 Setup File Syntax ... 31

11 Partitions ... 33
11.1 Partitions Overview .. 33
11.2 Partition Creation in the RAM-Partition Table .. 34
11.3 Partition Removal from RAM-Partition Table ... 35

12 File Systems .. 37
12.1 File System Types .. 37
12.2 Mount Command .. 37
12.3 Mounting FATFS .. 37
12.4 Mounting YAFFS .. 38

12.4.1 Mounting YAFFS on NAND ... 38
12.4.2 Mounting YAFFS on NOR ... 38
12.4.3 Unmounting YAFFS ... 38

13 Yet Another Flash File System (YAFFS) .. 40
13.1 YAFFS Overview .. 40
13.2 Working with YAFFS in LogicLoader ... 40

13.2.1 Developing a Partition Scheme ... 40
13.2.2 Formatting YAFFS Partitions ... 41
13.2.3 Mounting the Partition .. 42
13.2.4 Accessing YAFFS Partitions in an OS .. 42

13.3 Summary .. 42
Appendix A: Setup File Keys ... 44
Appendix B: LwIP License Agreement ... 45

LogicLoader v2.5 User Guide

PN 1020107B Logic PD, Inc. All Rights Reserved. v

Table of Figures and Tables
Figure 3.1: ls Command Columns .. 5
Figure 6.1: Downloading to RAM .. 13
Figure 6.2: Downloading to Flash ... 14

LogicLoader v2.5 User Guide

PN 1020107B Logic PD, Inc. All Rights Reserved. 1

1 Introduction to LogicLoader™

1.1 Overview

LogicLoader™ is a bootloader/monitor program developed by Logic PD that initializes an
embedded device and is capable of loading both operating systems and applications. In addition,
LogicLoader provides a full suite of commands for hardware configuration, in-field device
management, hardware debug, manufacturing, and test.

Customizable and extendable at the user level, LogicLoader is built for multiple processor
platforms (ARM, ColdFire, i.MX, XScale), with support for both CompactFlash FAT and YAFFS
file systems. LogicLoader contains a fully integrated TCP/IP stack, with DHCP and TFTP support,
providing network bootstrap support. Greater customization to your specific needs can be
achieved through conditional scripting and the ability for LogicLoader to drive LCD displays to
show custom splash screens, making LogicLoader an excellent tool to fast-forward your
embedded product design.

1.2 Differences between Versions 2.4 and 2.5

The following are the major differences between LogicLoader v2.4 and v2.5.

■ The lboot.lol script replaces the config block; see Section 7
■ New feature to handle custom video displays; see Section 8.3
■ New feature for CPU pin configuration; see Section 9
■ New lboot.sup setup file; see Section 10
■ New Appendix for setup file keys

1.3 Product Features
Operating System (OS) Bootstrap
■ Load multiple OSs (Microsoft Windows Embedded CE, Linux, etc.)
■ Load an OS from SD/MMC, CompactFlash, resident flash array, serial connection, or

Ethernet connection
■ Fully configure a hardware platform for the OS
■ Activate custom software functions to initialize hardware before the OS starts
■ Power on self-test capability

In-field Device Management
■ Modify boot actions at run time
■ Remote device management eases debugging and upgrading

Hardware Debug
■ Link in custom test functions to verify custom hardware
■ Use a familiar UNIX-like interface for debugging the device
■ Ethernet-based download and debug interface for Windows Embedded CE

Custom Applications
■ Use LogicLoader to load, burn, and jump to any custom embedded application

Manufacturing and Test
■ Add in custom functional test software for your specific device needs
■ Take advantage of the fast Ethernet connectivity to reduce manufacturing test time

Download Formats
■ SREC
■ ELF
■ BIN
■ RAW

LogicLoader v2.5 User Guide

PN 1020107B Logic PD, Inc. All Rights Reserved. 2

1.4 Acronyms
API Application Programming Interface
BIN Microsoft BIN file format
CPLD Complex Programmable Logic Device
CF CompactFlash®
DHCP Dynamic Host Configuration Protocol
EEPROM Electrically Erasable Programmable Read-Only Memory
ELF Executable Linkable Format
FAT File Allocation Table
FATFS File Allocation Table File System
GPIO General Purpose Input Output
GNU GNU is not UNIX
IO Input/Output
IP Internet Protocol
JTAG Joint Test Action Group
LAN Local Area Network
LwIP Lightweight implementation of the TCP/IP protocol stack
OS Operating System
RAM Random Access Memory
RAW RAW file format, e.g., absolute binary
RISC Reduced Instruction Set Computer
SOC System on Chip
SOM System on Module
SRAM Static Random Access Memory
SREC Motorola S-Record file format
TCP/IP Transport Control Protocol/Internet Protocol
TFTP Trivial File Transfer Protocol
YAFFS Yet Another Flash File System

1.5 Technical Specifications

Please refer to the component specifications and data sheets applicable to your SOM:

■ SOM Hardware Specification
■ Applicable Processor Manual

1.6 LogicLoader v2.5 Command Description Manual

For a complete description of the LogicLoader shell’s (losh) commands, please see the
LogicLoader v2.5 Command Description Manual1 available from Logic PD’s website. The
LogicLoader v2.5 Command Description Manual explains how to use each LogicLoader
command.

1.7 LogicLoader User Manual Addendums

Logic PD has written a SOM-specific addendum for each SOM that runs LogicLoader. The
LogicLoader User Manual Addendum is located under the User Manuals heading on Logic PD’s
Registered Products downloads page.2

1.8 LogicLoader Labs

Logic PD has written informal labs that provide a step-by-step introduction to basic LogicLoader
commands and usage for specific SOM platforms. These labs are available for download under
the User Manuals heading on Logic PD’s Registered Products downloads page.

1 http://support.logicpd.com/downloads/1440/
2 http://support.logicpd.com/auth/

http://support.logicpd.com/downloads/1440/
http://support.logicpd.com/auth/
http://support.logicpd.com/downloads/1440/
http://support.logicpd.com/auth/

LogicLoader v2.5 User Guide

PN 1020107B Logic PD, Inc. All Rights Reserved. 3

2 LogicLoader

2.1 LogicLoader Overview

LogicLoader is a bootloader/firmware monitor program developed by Logic PD. LogicLoader is
designed to initialize an embedded device, load and bootstrap an operating system, and provide
a low-level firmware monitor with debugging functionality.

2.2 LogicLoader Basics

Most OSs rely on an underlying bootloader to initialize a device from its reset condition. In
general, OSs are designed with the assumption that the system will be in a specific, pre-defined
state before the OS is started. Some example assumptions might be that system RAM has been
initialized and cleared, processor interrupts are disabled, and a timer has been initialized to
provide a system tick for the OS. The LogicLoader program initializes Logic PD’s SOM platforms
and prepares them for use by an OS.

Another basic function of LogicLoader is the capability to upgrade device software (flash memory,
CPLD firmware, serial EEPROM contents) after deployment. This in-field upgrade ability requires
a bootloader program that is capable of loading software images from various sources, as well as
committing loaded images to non-volatile memory. LogicLoader implements this by enabling the
system to load system software from flash memory, a CompactFlash storage card, a Local Area
Network, or a device attached to the system’s serial port. LogicLoader also has the ability to
upgrade an existing OS residing in system flash.

LogicLoader was developed to fulfill the need for an OS- and processor-independent bootloader
that can interface with a variety of hardware transports. The GNU development tool chain used to
build LogicLoader is cross-platform capable.

2.3 Using LogicLoader for Debugging

LogicLoader implements a feature-rich firmware monitor, including the LogicLoader shell (losh).
Losh is a command interpreter providing control over system state prior to loading an OS image.
It has features such as command recall, command line editing, automated control via scripting,
and diagnostic routines.

Losh includes many commands designed specifically to help software and hardware engineers
debug low-level interfaces. Some examples include:

■ Read and write any arbitrary memory address using the x and w commands.

■ Read and write any arbitrary register in a peripheral using x and w specifying a device in the
filename argument.

■ Automatic LogicLoader runtime integrity check. When idle, LogicLoader will continually
perform a checksum on itself to test for any corruption. If any corruption is detected, a
warning will be printed, and the shell variable SYS_INTEGRITY_FAIL will be incremented for
each failure. SYS_INTEGRITY_PASS is incremented for each correct checksum calculated.

■ Memory detection. Memory detection is done at LogicLoader boot time. The detected
memories will be indicated in the MEM_xxxxxx shell variables.

■ Manufacturing ID information. LogicLoader will read the contents of the ID ROM on the SOM
and populate the shell variables ID_xxxxxx. Also, info id can be used to read the ID
information.

■ Device type and state information. Using info device, the user can view the type of device
installed, as well as the state and capabilities of that device.

LogicLoader v2.5 User Guide

PN 1020107B Logic PD, Inc. All Rights Reserved. 4

■ Memory layout information. Using info mem, the user can view the memory map location of
every memory device. Info mem provides memory geometry information, including bad block
information of NAND flash devices. Info mem also indicates LogicLoader’s memory usage.

■ Display and modify any CPU pin that LogicLoader uses. Any CPU pin that LogicLoader uses
can be inhibited or redirected to a different pin (within the capabilities of the CPU). See the
info pin and pin commands.

All commands return a value to the command line that can be used to conditionally evaluate the
command result. Refer to the LogicLoader v2.5 Command Description Manual for a complete
description of all available commands.

Developers may code their own test programs using the provided GNU development tool chain
and use LogicLoader to load and run their software. This provides the ability to verify and debug
hardware interfaces without the overhead of building, downloading, and running large OS images.

2.4 Manufacturing Advantages with LogicLoader

LogicLoader can be used with a desktop software utility to load a device’s system software on the
manufacturing line. This utility is customizable to suit your desired transfer mechanism and
additional needs. LogicLoader can also be augmented with functional test software to completely
verify a device before it leaves the manufacturing line. For example, LogicLoader could launch a
device’s final functional test at the end of a manufacturing line, and then load the device’s final
software image before packaging. Contact Logic PD3 for more information on using LogicLoader
to streamline manufacturing.

3 http://support.logicpd.com/support/askaquestion.php

http://support.logicpd.com/support/askaquestion.php
http://support.logicpd.com/support/askaquestion.php

LogicLoader v2.5 User Guide

PN 1020107B Logic PD, Inc. All Rights Reserved. 5

3 The LogicLoader Shell

3.1 LogicLoader Shell Overview

Losh is a command interpreter similar to those found in Unix environments. Losh implements a
rudimentary network and file system command set, enhanced with custom diagnostic and
memory manipulation commands for debugging hardware.

Developers familiar with a Unix-like command line interface should find the losh implementation
familiar and easy to work with. Many of losh’s commands are patterned after their Unix
counterparts and share the same syntax.

3.2 LogicLoader Shell Basics

Losh uses a standard output stream (stdout). By default, stdout refers to a SOM’s debug serial
port. The output of any command that displays information to stdout (e.g., the ‘cat’ command) can
be viewed using the terminal emulation program connected to the SOM’s debug serial port.
Likewise, the standard input stream (stdin) also refers to the SOM’s debug serial port by default.

Losh includes a virtual file system that uses standard Unix path names. The highest-level (or root)
directory is designated by the identifier /. A special sub-directory of the root with the name dev is
used to enumerate and interact with the system’s various peripherals and their associated device
drivers.

3.2.1 Using the LogicLoader Shell

Losh includes both a basic command line editing feature and a command history feature. This
provides you with a quick way to repeat commands. Using the up and down arrow keys, you can
scroll through the list of previously executed commands. When a desired command is displayed,
press RETURN to repeat the command. The right and left arrow keys move the cursor anywhere
within the current line. This allows you to modify, delete, or insert text anywhere in the current line
without having to backspace the entire line and re-type commands.

Losh includes a user help feature through the help command. Typing help followed by any
command name at the losh prompt will display the command’s syntax, usage, and an example.
This may be especially helpful to users who are just becoming familiar with losh.

Commands may be run in the background by adding an ‘&’ suffix.

3.2.1.1 Understanding the ls Command

The ls command lists the contents of the current directory. A sample terminal output that results
from running the ls command is shown in Figure 3.1 below.

 losh> ls
 : NK.BIN 4268863
 D : DOC 0
 D : BOOT 0

entity attribute entity name entity size

Figure 3.1: ls Command Columns

The first column, entity attribute, can be blank or contain a D, S, R, r, or H. A blank field indicates
a normal attribute, a D indicates a directory attribute, an S indicates a device driver attribute, an R

LogicLoader v2.5 User Guide

PN 1020107B Logic PD, Inc. All Rights Reserved. 6

indicates a read-only attribute, an r indicates that reserved bits are set, and an H indicates a
hidden attribute.

The second column, entity name, is the name of the entity as it exists on the file system. This
name should be used, with attention to case, in any commands referencing the entity.

The third column, entity size, indicates the size (in bytes) of the entity on the storage device.

LogicLoader v2.5 User Guide

PN 1020107B Logic PD, Inc. All Rights Reserved. 7

4 Flash Devices and LogicLoader

LogicLoader supports both NOR and NAND flash devices; however, the usage is entirely
dependent upon the available flash type(s) on your SOM (i.e., some Logic PD SOMs only have
NAND, some only have NOR, and some have both NAND and NOR). NOR flash devices are
linear, memory-mapped devices that can be read in a similar manner to any RAM device.
Programming NOR devices requires a programming algorithm. LogicLoader supports NOR flash
devices conforming to the Common Flash Interface (CFI) specification, which includes most NOR
flash devices used today. NAND flash devices are block devices that require read and write
algorithms. Currently, there is no common algorithm used to read or write to NAND flash devices;
every manufacturer requires a unique algorithm.

4.1 NOR Addressing

Reading from a NOR device occurs in a similar manner to that of any RAM device. Writing to a
NOR device, however, is a little more complicated. The default state for NOR flash is that each bit
is set at 1. Halfwords can be used to set bits from 1 to 0; however, writing to a NOR device can
only set bits from 1 to 0. In order to set a bit from 0 to 1, the entire block containing that bit has to
be erased (i.e., all bits in that block are returned to their default state of 1).

Despite the similar addressing scheme between NOR flash and RAM devices, NOR flash cannot
be used as a RAM device because NOR is block-organized to allow for erasing. The fact that
NOR can be read as RAM is only used at boot time, when it can be used as a permanent byte
addressed storage device. When NOR is used as a file system device, block addressing is used.

4.2 Booting from NOR

When LogicLoader is stored in NOR flash, it relocates itself at boot time from flash memory to
system SDRAM and then spends the remainder of its run time executing out of system SDRAM.

4.3 Booting from NAND

When LogicLoader is stored in NAND flash, it requires a pre-loader called NoLo. NoLo is
responsible for locating LogicLoader in NAND flash and then copying LogicLoader to system
SDRAM. For platforms that boot from NAND, LogicLoader is located in a flash file system on the
NAND device and is named lboot.elf. Once LogicLoader is in system SDRAM, it spends the
remainder of its run time executing out of system SDRAM.

4.4 Booting from SD/MMC

When LogicLoader is stored on an SD/MMC card, LogicLoader requires the NoLo pre-loader to
boot. The exact file name of the NoLo file is platform dependent and is dictated by the CPU boot
ROM. NoLo is responsible for locating LogicLoader on the SD/MMC card and then copying
LogicLoader to system SDRAM. For platforms that boot from an SD/MMC card, LogicLoader is
located in a file system on the SD/MMC device and is named lboot.elf. Once LogicLoader is in
system SDRAM, it spends the remainder of its run time executing out of system SDRAM.

4.5 NAND Addressing

NAND devices use an addressing scheme of block, page, and sector. A block is the smallest
erasable chunk of memory, whereas pages and sectors are merely mechanisms that describe the
addressing hierarchy (blocks are made up of pages; pages are made up of sectors). The number
of blocks, pages, and sectors will be unique for each particular NAND flash device. Some NAND
devices may not have any sectors, in which case addressing is performed using only blocks and
pages.

LogicLoader v2.5 User Guide

PN 1020107B Logic PD, Inc. All Rights Reserved. 8

NAND devices currently come in two types where addressing is concerned: small page and large
page. Small-page devices have a page size of 512 bytes; large-page NAND devices have a page
size of 2048 bytes. Larger page sizes tend to offer higher densities of NAND flash.

Whether the smallest chunk of data is addressed using a page or a sector, there is a spare area
associated with that smallest chunk. This spare area will be 16 bytes for small-page devices and
64 bytes for large-page devices. The spare area is used by software to manage:

■ Error correction codes to correct single-bit errors and to identify two or more bit errors.

■ Manufacturer bad block identification.

■ Flash file system metadata. The specific metadata will be unique to the particular flash file
system used. LogicLoader dedicates a portion of the NAND spare area to YAFFS.

4.6 NAND Bad Blocks

NAND devices can develop bad blocks over time, as well as contain bad blocks when shipped
from the manufacture. Bad blocks are defined as having two or more bit errors within the block.
Single-bit errors need to be corrected with software using an ECC algorithm. Most NAND blocks
can be erased and rewritten on the order of 100,000 cycles before potentially going bad. NAND
manufacturers state that the device integrity decays only with erase/program cycles. However,
some third-party studies indicate that data integrity may decay with a large number of read cycles
as well. LogicLoader and YAFFS assume data integrity does not decay with reads. YAFFS
assumes writes may lose integrity over time, so NAND writes are all verified and two or more bit
errors will result in YAFFS marking the block bad.

Unlike NAND flash, NOR flash devices do not have bad blocks.

4.7 NAND Programming

NAND devices are programmed by sending commands to the device. Similar to that of NOR
devices, programming of NAND devices consists of an erase phase that fills the entire block with
1s and a program phase that writes 0s to the device. Since NAND is a block device, a flash file
system is needed to manage where data is read from and written to in order to avoid bad blocks
on the device.

4.7.1 Skip Bad Block Method

A common algorithm used to program flash devices in production is the skip bad block method.
This is a flash file system in its simplest form. As the name implies, data is written contiguously on
the device from low numbered blocks to higher numbered blocks, while skipping any bad blocks
marked by the manufacturer. This algorithm works well for programming a NAND device once,
but is not capable of removing and rewriting portions of the written image.

4.7.2 YAFFS Overview

The YAFFS file system has been optimized for NAND use. YAFFS is able to:

■ Identify and avoid bad blocks using an ECC algorithm.

■ Use load leveling, where erasing and writing is averaged out among all the blocks of the
device, and no one block is erased and written repeatedly.

■ Manage metadata, such as directories and links.

YAFFS comes in two types: YAFFS1 and YAFFS2. YAFFS1 is the first incarnation of the YAFFS
file system and only supports small-page NAND flash devices. YAFFS2 is an improved version
that supports both small-page and large-page NAND flash devices. The losh environment makes

LogicLoader v2.5 User Guide

PN 1020107B Logic PD, Inc. All Rights Reserved. 9

no distinction between the two types and refers to both YAFFS1 and YAFFS2 as YAFFS. For the
remainder of this document, any reference to YAFFS is applicable to both YAFFS1 and YAFFS2.

More information regarding how YAFFS operates in LogicLoader can be found in Section 13 of
this document.

LogicLoader v2.5 User Guide

PN 1020107B Logic PD, Inc. All Rights Reserved. 10

5 Block Devices

Within LogicLoader, a block device is any device that only contains pages and sectors that can
be read from or written to (this includes devices that require a block erase before a write).
Examples of block devices are: ATA, NOR flash, and NAND flash. Losh supports all block
devices with the same command set. More detailed information for each command can be found
in the LogicLoader v2.5 Command Description Manual.

5.1 Using Block Reference

In the losh command set, there are two different methods to directly reference a block on a
device. Some commands require a B to be placed in front of the block number. For example:

losh> erase /dev/nand0 B9 B500

In this example, omitting the B would indicate flat memory addressing. Use of flat memory
addressing is discouraged and should be replaced with block-aligned memory addressing.

Other commands require the block address to be written without a B in front of the block number.
For example:

losh> part-add /dev/nand0 a 1 1024

This command creates a partition a in the NAND device. The partition starts at block 1 and is
1024 blocks long. (Partitions are discussed in detail in Section 11 of this document.)

Because the specific command dictates the proper method to reference a block, it is important to
understand the requirements of that specific command. The help feature may be useful in
determining which method should be used.

5.2 burn

The burn command works with any block device. It burns the loaded image to the device from a
given block offset. For example:

losh> burn /dev/flash0 5

This command will burn the loaded image to flash starting at block 5.

For burning to a NAND device with the skip bad algorithm, use the dd command as described
below.

5.3 dd

The dd command copies blocks from a source device to a destination device. The command can
use the skip bad block algorithm and it can be turned on with a flag. Use of the dd command is
not limited to block devices; it can be used with whatever device you want. However, the device
used with the command does determine how to specify block size. For NOR flash, the dd
command requires data to be aligned to the width of the device; for ATA or NAND flash, the
command requires you to specify the exact read/write page size. For ATA, the page size is 512;
for NAND flash, the page size is 512, 1024, 2048, or 4096 (518, 1056, 2112, or 4224 when

LogicLoader v2.5 User Guide

PN 1020107B Logic PD, Inc. All Rights Reserved. 11

including spare area). The info mem command can be used to determine the correct page size
for your NAND device, where the page is denoted by the more general term chunk.

The dd command can also be used to provide an image that is file-system independent to
program multiple NAND flash devices in manufacturing. Please contact Logic PD for more
information on how to use the dd command to create an image suitable for a manufacturing
environment.

For example:

losh> dd if:/load of:/dev/nand0 count:16 ibs:512 obs:512 os:16
skip_bad:1

This example command will copy the contents of load into the NAND data area, skip spare area,
and use the skip bad block algorithm. For command argument details, please see the
LogicLoader v2.5 Command Description Manual.

5.4 erase

The erase command can be used with any device. However, extra caution must be taken when
erasing NAND and NOR blocks so as not to erase a YAFFS partition or any LogicLoader files. An
attempt to erase these files or partitions will require confirmation before the erase command
continues; this will prevent mistakenly erasing files required by the system to boot. NAND blocks
with bad block markers will not be erased. For example:

losh> erase /dev/nand0 B10 B502

This command will erase 502 blocks of the device starting at block 10.

There is an optional force argument that can be used with the erase command. The force
argument will force the erase command to erase all blocks in the specified address range even if
they have been marked bad. Without the force argument, the erase command will skip bad blocks
in an effort to preserve bad block information. Extreme caution must be used when using the
force argument. If a block has been marked bad by the NAND manufacturer, and the block is
erased with the force argument, there is no way to ever recover the bad block information. For
example:

losh> erase /dev/nand0 B10 B502 force

NOTE: The legacy syntax erase <offset> <length> <device> is only supported for
compatibility reasons.

5.5 info

The info command can be used to return specific information about the NAND and NOR devices,
as well as information about any YAFFS boot partitions. This information is returned by using the
info mem and info YAFFS arguments. The info mem command includes geometry data for NAND
and NOR flash devices. The geometry information includes:

■ Base address (unique to NOR devices)

■ Number of blocks

http://support.logicpd.com/support/askaquestion.php

LogicLoader v2.5 User Guide

PN 1020107B Logic PD, Inc. All Rights Reserved. 12

■ Bytes per block

■ Is chunk device (if is_chunk_device equals 0, then the following information is not relevant
and, therefore, is not printed)

■ Number of chunks

■ Chunk size

■ Bad block list

■ Bytes per chunk

■ Bytes per spare

5.6 update

The update command is used to load and install an update image; it also includes support for
updating LogicLoader in the YAFFS partition. When update files are sent to the SOM using the
update command, LogicLoader will identify the update as LogicLoader and then program the
NAND part as needed.

LogicLoader v2.5 User Guide

PN 1020107B Logic PD, Inc. All Rights Reserved. 13

6 Program Loading

Using LogicLoader to download any application, operating system, or update to a device requires
an understanding of the interaction between the load, burn, jump, and exec commands. The
purpose of this section is to describe each individual command and explain the interaction
between these commands.

6.1 Understanding the load Command

The purpose of the load command is to transfer a binary image to a device. The image must be in
one of the following supported formats: ELF, SREC, RAW, or BIN. The load command uses
information inherent to the supported formats (or as entered as part of the command for RAW
format) to determine where the downloaded image should be stored in the device’s memory. The
load command stores the destination address of the downloaded image for later use by the burn
command, and stores the program start address for later use by the jump or exec commands. For
RAW format, the load command will store the destination address as the program start address.
The image must be destined to reside in either flash memory, system RAM, or on-chip SRAM.

The load command also creates a file in the root of the file system called /load. This file can be
used by any other file system commands; a common use of the /load file is to copy the loaded
image into a YAFFS partition.

If an image is destined for system RAM or on-chip SRAM, the load command stores the image
directly to its run-time location. Refer to Figure 6.1 for a graphical representation of this process.

Host PC

System RAM
external to the SoC

LogicLoader code,
variable, and stack
space

Open RAM

end of LogicLoader

When using the load command to transfer an application destined for RAM, LogicLoader
arranges the sections of the image directly in system memory. LogicLoader uses the
application's file format record information to determine where the sections should be placed.
Sections are placed in the memory location the file records specify. If the destination address
overlaps LogicLoader reserved memory (code, variable or stack space), LogicLoader will
abort the load.

Figure 6.1: Downloading to RAM

LogicLoader v2.5 User Guide

PN 1020107B Logic PD, Inc. All Rights Reserved. 14

If a downloaded application is destined for flash memory, the load command transfers the file into
a temporary RAM buffer on the device. The transferred image may be programmed into flash
using the burn command after the transfer is complete. Refer to Figure 6.2 for a graphical
representation of this process.

Host PC

LogicLoader

Open

Flash Memory System RAM
external to SoC

LogicLoader code,
variable, and stack

space

Open RAM

When using the load command to transfer an application destined for flash memory,
LogicLoader uses available system RAM as a buffer where the downloaded image is
temporarily stored. The end result of this command is a copy of the downloaded image
being placed in RAM.

Flash Memory System RAM
external to SoC

LogicLoader code,
variable, and stack

space

The downloaded
image has been

temporarily
stored in RAM.

The burn command is used to complete the transfer of the image to flash memory. This
command analyzes the downloaded application and determines where in flash memory
the image is to be saved. If the application will overlap flash block zero, the user is
notified and confirmation is required before continuing. Otherwise, the burn command
erases the relevant blocks of flash and programs the downloaded application into the
flash array.

End of
LogicLoader

End of LogicLoader
LogicLoader

Downloaded
image's final
destination

Figure 6.2: Downloading to Flash

6.1.1 Using TFTP as a Source

A file located on a TFTP server can be used as the source for the following commands: load, cat,
hd, md5sum, and cp.

The general form for a TFTP file is /tftp/<server>:<filename>:[port], where <server> is the IP
address of the server, <filename> is the name of the file on the TFTP server (including

LogicLoader v2.5 User Guide

PN 1020107B Logic PD, Inc. All Rights Reserved. 15

subdirectory identifiers), and [port] is the optional port number the TFTP server is listening to. If
nothing is specified for the port, it is assumed the TFTP server is using the standard port 69.

For example, to load the ELF file image.elf from a TFTP server accessible at IP address
192.168.3.6 that is listening on the standard port, the following command would be used:

losh> load elf /tftp/192.168.3.6:image.elf

Another example would be to load the Platform Builder file NK.bin from the TFTP server at IP
address 10.1.240.10 listening on port 3001:

losh> load bin /tftp/10.1.240.10:NK.bin:3001

6.2 Understanding the burn Command

The burn command should only be used following the successful download of a binary image
destined for flash. If the load command is used to download a flash image, the image is
temporarily stored in a reserved section of system RAM. The burn command is responsible for
actually erasing the necessary blocks and programming the downloaded image into flash at the
destination address. Refer to Figure 6.2 for more information.

6.3 Understanding the jump and exec Commands

LogicLoader provides two different ways to transfer execution to your application. The jump
command is more useful for launching and debugging an application that will be relying on
LogicLoader or an OS to setup the run-time environment. The exec command is more useful for
launching an application, such as an OS that will take over total control of the hardware and the
environment. The differences between the jump and exec command are that only exec can pass
a command line argument to the program being executed and that exec disables interrupts, the
cache, and the MMU (if present).

6.3.1 The jump Command

The jump command is an assembly-level jump to the starting instruction of a program. If jump is
executed without a parameter, LogicLoader will jump to the program start address of the last
program loaded to system RAM (if any). If an address is passed in, the jump command will jump
to the specified address. After a jump command is performed, LogicLoader continues to execute
in the background. LogicLoader does not set up a run-time environment for a program; instead
the program inherits LogicLoader’s current environment. It is the software engineer’s
responsibility to ensure that the hardware is set up in the desired manner.

This example may be used when writing a function that LogicLoader will jump to:

losh> int my_jump_function(void);

6.3.2 The exec Command

The exec command is an assembly-level jump to the starting instruction of a program that will
pass in three arguments. If exec is executed without a parameter, LogicLoader will jump to the
program start address of the last program loaded to system RAM (if any) and pass in a pointer to
an empty string. If both an address and command line are specified, the exec command will jump
to the specified address and pass a pointer to the command line provided. The exec command
will disable interrupts, the cache, and the MMU (if present) prior to executing the jump.

LogicLoader v2.5 User Guide

PN 1020107B Logic PD, Inc. All Rights Reserved. 16

The exec command passes the command line argument via a pointer to memory that has been
allocated from LogicLoader’s heap. Any application or OS code must preserve the command line,
or finish using the command line arguments, before reclaiming LogicLoader’s memory space for
its own use. Because the exec command shuts off the MMU, the image must have a virtual
address that maps directly to its physical address since the entry address that exec jumps to will
always be a physical address.

This example may be used when writing a function that LogicLoader will exec to:

losh> int my_exec_function(unsigned int arg1, unsigned int arg2, char
*cmd_string);

The first two arguments, arg1 and arg2, have different values depending on the flags given to
exec. The third argument will be a pointer to the command line, as described above.

To boot an ARM Linux kernel, use the -t argument with the exec command. This causes arg1 to
become zero; arg2 is then the architecture ID, and arg3 is a pointer to an ATAG structure that
contains, among other things, a pointer to the cmd_string.

6.3.3 Command Example Using load and burn with jump or exec

An application program that is written for the Zoom Development Kit can be linked to reside in
flash or RAM.

First, let’s assume that we have built an application for flash. To properly store this program in
flash, issue the load command followed by the burn command. Make note of the program start
address (for example: 0x400d0100) so that you can jump to the program after a reset. Once the
image has been burned to flash, you may enter the jump or exec command specifying
0x400d0100 as the argument at any time. However, you can take a shortcut if you have not reset
the board, since the load command will store the program start address. A valid sequence would
be as follows:

losh> load elf

This transfers the image to the device.

losh> burn

This programs the image into flash at the destination address stored by the load command.

losh> jump or exec

This will work because the load command saved the program's flash start address. Both the
burn destination address and the program start address will be valid until the next reset or the
next use of the load command.

LogicLoader v2.5 User Guide

PN 1020107B Logic PD, Inc. All Rights Reserved. 17

After a reset, the program may be launched at any time using the jump or exec commands
with a specific destination address:

losh> jump 0x400d0100

or

losh> exec 0x400d0100 –

Next, let’s assume that we have built an application for RAM. To properly load and execute an
application out of RAM, issue the load command followed by the jump or exec command. A valid
sequence would be as follows:

losh> load elf

This transfers the image to the device.

losh> jump or exec

This will work because the load command stored the program start address. The program
start address will be valid for this program until the next reset, or the next use of the load
command.

Keep in mind that the option of specifying the program start address, as shown in the flash
example, is also available.

6.4 Understanding the update Command

LogicLoader deploys software or firmware updates in the form of update files (.upd extension). To
deploy an update file, use the update command. If a filename/path parameter is not passed to the
update command, the system will assume that stdin is being used to send the update file to the
system. When the update command is activated after the system has received the .upd file, it
automatically launches the file and performs the actions required.

Update files are comprised of self-extracting applications that, once activated by the update
command, run and perform whatever function the application was coded to carry out. This allows
a single update command to perform a variety of different actions from a self-contained file with
minimal user interaction.

The procedure to update LogicLoader with the update command differs from the load/burn
procedure in that only one command implements the entire update process without any user
interaction or confirmation.

LogicLoader v2.5 User Guide

PN 1020107B Logic PD, Inc. All Rights Reserved. 18

7 Scripting

7.1 Scripting Overview

Scripts can be used to automate any commands or command sequences entered on the
command line. Scripts are comprised of a simple text file with a listing of commands that the user
wishes to automatically execute in sequence.

7.1.1 Scripting Rules

Basic scripting rules are as follows:

■ Enter commands into the script file with the same syntax used on the losh command line

■ Separate commands with a semi-colon or a new line

■ End the script with a \n (this tells the parser to stop parsing the file and instructs the
command interpreter to start executing the script)

■ Use the command exit to end the script (this tells the command interpreter to stop executing
the script)

7.2 Launching Scripts

The process of launching a script manually, or post-boot time, uses the source command. For
example, the command source /cf_card/myscript.txt will execute the script stored in the
file myscript.txt on a mounted CompactFlash card. For more information on the source command,
please refer to the LogicLoader v2.5 Command Description Manual document.

The process of auto-launching scripts on startup is referred to as boot-time scripting. Boot-time
scripts are the primary mechanism used for automatically launching an OS or application when
deploying a product to the field. Their capability is the same as other scripts, except that they can
be automatically run at startup. You can think of a boot-time script fulfilling the same role as an
autoexec.bat file commonly found on desktop operating systems. Boot-time script usage is
described more thoroughly below.

A third way to launch a script is to send it to the system while LogicLoader is waiting at the losh
prompt. If the script file is sent over the terminal emulator connection to the losh shell, the script
will be entered on the command line as if typed in by the user. If the script being sent
incorporates a carriage return at the end of the script, the command line will launch the script
when it receives the carriage return. This type of script launching is primarily used during
development when the developer wishes to send a number of development commands to
LogicLoader in sequence. For example, if a command sequence initializes the Ethernet interface,
downloads a Windows CE OS image, and then launches the OS image with a specific command
line.

7.3 Persistent Script Storage

In order for a script to persist across power cycles, the script must be stored in a local, non-
volatile memory device on the system. There are a number of different persistent storage
locations that can be used to store a script. The primary storage mechanisms supported by
LogicLoader are the serial EEPROM, the resident flash array (YAFFS), and the SD/MMC
interface. Because different SOMs may not have one or more of these interfaces available in
hardware, please refer to the individual SOM’s LogicLoader User Manual Addendum document
for specific persistent storage interface support.

LogicLoader v2.5 User Guide

PN 1020107B Logic PD, Inc. All Rights Reserved. 19

7.3.1 Persisting Scripts with the echo Command

The echo command can be used to store a script in the serial EEPROM. To include a new line in
the first argument to echo, it is necessary to enclose the whole argument in double-quotes.
Remember to end the script by inserting \n before the end quotes to instruct the parser to stop
parsing the file. Since scripts stored in the serial EEPROM are not stored as actual files, it is
important that any previous information in the serial EEPROM is not interpreted as part of the
script. Check the contents of the serial EEPROM with cat or hd to verify that the contents are as
expected. If not, the erase command should be used to erase any previous information before the
echo command is executed.

7.3.2 Serial EEPROM Scripts

For those SOMs that contain EEPROM, the system’s serial EEPROM is one persistent storage
area that supports the storage and execution of scripts. The serial EEPROM is the primary
boot-time script storage location. Boot-time scripts stored to the serial EEPROM are typically
short and may redirect to a secondary script on an interface capable of larger storage capacity.

To store a script to the serial EEPROM interface (/dev/serial_eeprom), use the echo command.
An example of using the echo command to store information to the serial EEPROM is shown
below:

losh> echo "LOLOmount fatfs /dev/ata0a /cf; source /cf/B.BAT; exit;\n"
/dev/serial_eeprom

7.4 Settings that Affect Scripts

The set command can be used to modify several internal variables affecting script execution.
These function similarly to the Unix shell scripting analog, where a '-' causes the flags that follow
to be set, and a '+' causes them to be unset. It is highly recommended during development to set
the -w flag to receive warnings about common scripting errors.

The flags available are:

■ e Exit script execution immediately when commands fail
■ n Read commands, but do not execute; ignored by interactive shells
■ q Do not print LogicLoader error messages
■ u Exit on expansion of unset variables
■ v Echo input lines as they are read
■ w Print warnings for possible errors
■ c Allow prompt for user confirmation
■ x Echo all user commands before executing them
■ m Mute all output of the script

7.5 Using Boot-time Scripting

It is possible to execute a script automatically at startup. This is useful for making the device jump
into an operating system or other program when powered on without requiring manual command-
line input. This functionality can be described as being equivalent to the system automatically
calling the source command on one of the boot-capable devices.

7.5.1 Boot-time Script Guidelines

All of the commands available in LogicLoader are also available to boot-time scripts. As in normal
scripts, the ‘#’ character can be used to indicate a comment line. A line starting with ‘#’ will be

LogicLoader v2.5 User Guide

PN 1020107B Logic PD, Inc. All Rights Reserved. 20

ignored by LogicLoader but is often used to place comments within the script. For a script to be
loaded at power up, the script must:

■ Be located on the boot device. This would be in the /lboot partition if booting from NAND
flash, or the root directory if booting from SD/MMC.

■ Be named lboot.lol.

7.5.2 Exiting a Boot Script

A common need is to abort the execution of a boot script in order to exit into the command line for
additional debugging, development, or simply to change the boot script. The primary way to
accomplish this is by holding the q key down in a terminal emulator program attached to the
device’s debug serial port.

The system pauses for one/half of a second to read from debug serial port to determine if an
abort request is being made.

7.5.3 Understanding the echo Command

The echo command can be used to store a script in the serial EEPROM. The echo command only
writes the number of bytes contained in the string. If the string to be written is shorter than the
previous contents, the result of the echo will not be what is intended. Use the cat or hd command
to verify the contents of the serial EEPROM before using the echo command.

7.6 Conditional Scripting and Variables
7.6.1 Variables

Losh supports the concept of shell variables. The syntax and usage of these variables are
patterned after the BASH shell.

7.6.1.1 Variable Names

A variable name may be any sequence of letters, numbers, or underscore tokens.

7.6.1.2 Variable Assignment

A variable is created and assigned a value by using the ‘=’ operator. For example,

losh> foo = 1

creates a new variable named foo and assigns it the value of 1. Once a variable has been
created, it may be assigned a new value at any time by using the ‘=’ operator again. The
right-hand side of an assignment statement is not limited to a simple number; it can be a complex
expression involving other variables.

7.6.1.3 Internal Representation

Variables are internally represented as strings. For example,

losh> foo = 1

internally points the variable foo at a sequence of characters equivalent to: 0x31 0x00. Because
variables are treated as strings, commands may be aliased as variables. For example:

LogicLoader v2.5 User Guide

PN 1020107B Logic PD, Inc. All Rights Reserved. 21

losh> e = echo
losh> msg = “Hello World”
losh> $e $msg
Hello World

Notice the quotes used to ignore white space. If the created variable will be assigned to more
than one token, the tokens must be included in double-quotation marks.

7.6.1.4 De-referencing a Variable

To de-reference a variable, that is, to access a variable’s assigned value, use the ‘$’ operator. For
example:

losh> foo = “Hello World”
losh> echo $foo
Hello World

The ‘$’ operator causes the shell to substitute the variable with the string value assigned to it. In
some cases, a variable’s assigned value will be converted into a numeric value. This occurs when
the shell is evaluating a conditional expression and is described in more detail below.

If a variable is referenced that does not have a previous value, its value is assumed to be zero
and a warning message is printed.

NOTE: Enclosing a sequence of tokens within double-quotes binds them together into a single
token. For example,

losh> e = “echo Hello World”
losh> $e
echo Hello World: command not found

will not work because the parser only evaluates the string once. Thus, instead of being split up
into three distinct tokens, the double-quotes cause the tokens to be bound and treated as one.

7.6.1.5 Built-in Variables

The shell contains two built-in variables, namely ‘?’ and ‘@’.

The ‘?’ variable is assigned to the return value of the last command executed. By convention, all
shell commands return either a zero to indicate that it completed successfully or a non-zero error
code to indicate a failure. To view a command’s return value, use the echo command and the
value of the ‘?’ variable. For example:

losh> mount fatfs /dev/ata0a /cf # Mount a FAT file system.
losh> echo $? # Display the value returned from the mount
 command.

LogicLoader v2.5 User Guide

PN 1020107B Logic PD, Inc. All Rights Reserved. 22

The ‘@’ variable is an auxiliary variable that is set by some commands. For instance, the echo
command sets this value to the number of characters that it wrote. Therefore:

losh> echo “Hello”
losh> echo $@
0x5

The number 5 is printed because the string Hello contains five characters.

Please reference the LogicLoader v2.5 Command Description Manual for specific command
descriptions in order to learn which commands set the ‘@’ variable and how to use these
commands.

7.6.1.6 Saving and Loading Variables

Shell variables can be saved to a file (see save-var command), and re-loaded (see the load-var
command) on different shell sessions. This is useful to preserve a variable state between
executions, creating a repeatable set of variables and values at startup or providing variable data
values to an OS or user application.

Using a variable file to load variables is in essence the same as running a LogicLoader script that
uses the make-var command to create one or more variables. The difference is that you can use
LogicLoader to create a variable file that can be made to load at boot time, prior to any script
starting.

7.6.1.6.1 Variable File Format

The file format is ASCII, where each variable is delineated by a new line, and each of the variable
meta-data are separated by a comma. The parameters are as follows (in order):

■ Variable name

■ Type, where the acceptable types are:
□ 1 – Number
□ 2 – String
□ 3 – Reserved – do not use
□ 4 – Byte pointer
□ 5 – Word pointer
□ 6 – Long pointer

■ Variable value

■ Protection, where the protection attribute is a bit mask of the following:
□ 1 – Read only
□ 2 – Static
□ 4 – Global
□ 8 – Hidden

Comments within the file can be made using the ‘#’ character at the start of a line. Comment lines
will be ignored by LogicLoader when loading.

7.6.1.6.2 Example File

The following example file below will create three variables:

■ example_var: This variable is of type number, with initial value set to 0x55aa55aa.

LogicLoader v2.5 User Guide

PN 1020107B Logic PD, Inc. All Rights Reserved. 23

■ ro_string: This variable is a string variable with initial value of stuff. This variable has a
protection set to read only. Once this variable is loaded into the shell, its value cannot be
changed.

■ gpt2_tcrr_reg: This variable is a long-word pointer to address 0x49032028. Any references to
this variable within the shell will return the 32-bit contents of the data at 0x49032028.

lboot.var example

This file is an example of how to create a LogicLoader .var file.

name, type, value, protection
example_var, 1, 0x55aa55aa, 0
ro_string, 2,stuff, 1
gpt2_tcrr_reg, 6, 0x49032028, 0

7.6.1.6.3 Loading Variables at Boot Time

Shell variables can be automatically loaded at boot time. Placing the .var file in the boot time
location (/lboot when booting from NAND, or the root directory when booting from SD/MMC), and
naming it lboot.var will ensure the variable file is loaded into the shell at boot time.

7.6.2 Conditional Scripting

Losh supports an if-else-endif programming construct as well as a while construct. The syntax for
an if-statement and an if-else statement is shown below:

if (expression)
 action
endif

if (expression)
 action-1
else
 action-2
endif

Parentheses are not required around the expression, but they are encouraged to improve
readability of the script. Similarly, tabs and new lines are not needed. The various elements of the
construct may be separated by the ‘;’ operator if so desired. For example:

losh> if expression echo “pass”; else echo “fail”; endif
pass

or

losh> if expression echo “pass”
 else echo “fail”;
 endif

LogicLoader v2.5 User Guide

PN 1020107B Logic PD, Inc. All Rights Reserved. 24

The syntax for a while statement is shown below:

while (expression)
 action
done

The expression is evaluated first. If the return is non-zero, then action is taken and control comes
back to the expression evaluation. This is repeated until the expression evaluates to zero.

Note that if and while statements can be nested. The following example calculates the greatest
common divisor of the numbers stored in the variables a and b, leaving the result in a:

losh> while ($a .ne $b) {
 if ($a .gt $b) {
 a = $a - $b
 } else {
 b = $b - $a
 }
 done

7.6.2.1 Expressions

An expression is defined as a number or a combination of a logical operator and a number or
numbers. If a variable has been defined and is being de-referenced in an expression, its value is
converted to a number. An expression evaluates to true if the result is non-zero and false if the
result evaluates to zero. Therefore, the simplest expressions would be:

if (1) # evaluates to true.
if (0) # evaluates to false.

7.6.2.2 Using Shell Variables

losh> foo=1
losh> bar=0x0

if ($foo) # evaluates to true.
if ($bar) # evaluates to false.

The other operators supported by the shell are listed below in order of decreasing precedence.

 ‘-‘ ‘!’ ‘~’ unary minus, logical not, arithmetic not
 ‘*’ ‘/’ ‘%’ multiplication, division, modulus
 ‘+’ ‘-‘ addition, subtraction
 ‘<<’ ‘>>’ left shift, right shift
 ‘.lt’ ‘.le’ ‘.gt’ ‘.ge’ less than, less than or equal, greater than, greater than or equal
 ‘.eq’ ‘.ne’ equality, inequality
 ‘<’ ‘>’ less than, greater than
 ‘==’ ‘!=’ equality, inequality
 ‘$((‘ ‘))’ immediate evaluation open, immediate evaluation close
 ‘^’ bitwise exclusive or
 ‘|’ bitwise or
 ‘&’ bitwise and
 ‘&&’ logical and
 ‘||’ logical or

LogicLoader v2.5 User Guide

PN 1020107B Logic PD, Inc. All Rights Reserved. 25

Note that the operators ‘==’, ‘!=’, ‘>’, ‘<’ apply to either strings or integers, but the evaluation is
done as string comparisons. The operators ‘.eq’, ‘.ne’, ‘.lt’, ‘.le’, ‘.gt’, ‘.ge’ apply to either
strings or integers, but each side of the expression must evaluate to numbers.

Immediate Expression Evaluation:

The immediate evaluation construct ‘$((‘ … ‘))’ is used when a command needs an immediate
value. In this case the expression contained in ‘$((‘ … ‘)) is immediately evaluated and returned
as a number. For example, the x command cannot take an expression as its operand:

losh> x /x 0x80200000 + 0x10 4
error: x: wrong number of arguments

Using the immediate evaluation construct ‘$((‘ … ‘))’ gives:

losh> x /x $((0x80200000 + 0x10)) 4
0x80200010 04001000 eb000000 fe000001 40ea0003 ……………@

The following are all valid expressions that can be used as the right-hand side of an assignment,
as an argument to a command (if enclosed in an immediate evaluation construct), or as the
conditional expression in an if or while construct:

1 & 0 # evaluates to zero
1 | 0 # evaluates to one
0x01 ^ 0x02 # evaluates to 0x3
1 >= 2 # evaluates to zero
0 .ge 1 # evaluates to zero
1 + 3 * 5 ^ 7 # evaluates to 23 (reduces to 16 ^ 7)

As mentioned above, the shell exports two built-in variables. These are ‘?’ and ‘@’. The variable
‘?’ holds the return value of the last command executed. Therefore, constructs like the one below
can prove to be very useful:

mount fatfs /dev/ata0a /cf
if ($?)
 # Save current return values because ‘echo’ will overwrite them
 s_q = $?
 s_a = $@
 echo “Error, mount failed error codes: ”
 echo $s_q
 echo $s_a
else
 echo “Mounted FAT file system at point ‘/cf’”
endif

NOTE: In the case of an error, the values of the ‘?’ and ‘@’ variables are saved. This is because
the first call to the echo command will overwrite the value of those variables.

LogicLoader v2.5 User Guide

PN 1020107B Logic PD, Inc. All Rights Reserved. 26

7.6.2.3 Escaping the Variable Character

If the echo command is used to store a variable reference in a script, the ‘\’ operator must be
used before that variable in order to defer evaluation of that variable until echoed. For example,

losh> echo “if ($a == 2) source bar;\n” /dev/serial_eeprom

needs to be written as

losh> echo “if (\$a == 2) source bar;\n” /dev/serial_eeprom

in order to prevent losh from evaluating the variable a in the string before the echo call is used.
This method applies to any string which must include a literal ‘$’ character.

7.6.2.4 Comments

In order to make it easy to self-document scripts, the shell recognizes and ignores comments. A
comment begins with the character ‘#’ and extends to the end of the current line.

7.6.2.5 Numbers

The shell recognizes the following number formats:

■ decimal
□ contains the characters 0-9
□ does not start with a zero

■ octal
□ contains the characters 0-7
□ starts with a zero

■ hexadecimal
□ contains the characters 0-9, a-f, or A-F
□ starts with the sequence 0x or 0X

LogicLoader v2.5 User Guide

PN 1020107B Logic PD, Inc. All Rights Reserved. 27

8 Video Interface

8.1 Video Interface Overview

LogicLoader includes the following video commands to configure the video controller:

■ video-clear: clears the default video screen (sets the frame buffer to a monolithic color)

■ video-close: turns off and un-initializes the default video device

■ video-fb: sets or displays the video frame buffer address

■ video-init: connects and initializes default video device settings, but does not enable the
controller

■ video-off: turns off an initialized display

■ video-on: turns on an initialized display

■ video-open: connects and initializes default video device settings and enables the display
controller (equivalent of video-init and video-on)

■ video-add: captures the current video controller register settings and assigns a name to that
video mode; useful for creating custom display timings

8.2 Using the Video Interface after Initialization

Once the display has been initialized with either the video-open or the video-init commands, any
of the drawing commands can be used. The video-fb command allows the user to change the
frame buffer address.

After executing the video-fb command to change the frame buffer address, all drawing commands
will use the new frame buffer address instead of the default. The video-init command can be used
to connect and initialize the video controller without enabling the video display. Then use the
bitmap command to draw to different areas in memory prior to using the video-on command to
turn on the display. A typical command sequence might look like the following:

losh> video-init 7 16
video-init display: width: 640 height: 480 bpp: 16 disp: 7
losh> bitmap TEST1.BMP 0xc0400000
losh> bitmap TEST2.BMP 0xc0600000
losh> video-fb 0xc0400000
losh> video-on
.....other command sequences
losh> video-fb 0xc0600000

.....other command sequences
losh> video-off

8.3 Using a Custom Video Display

If using a custom video display, custom video timings can be assigned a name and be used to
operate the display.

LogicLoader v2.5 User Guide

PN 1020107B Logic PD, Inc. All Rights Reserved. 28

8.3.1 The video-add Command

Assuming the display timings have been determined, begin by writing those timings to the
processor’s video controller registers using the w command. Then, use the video-add command
to assign a name to those settings. It may help to use info video < name> to view the display
controller registers of a similar display. Then set those same registers with similar or new values
depending on your video needs.

Once a name has been assigned to your video registers, other video commands like video-open
and video-close can be used specifying your newly-created video name where needed.

Bear in mind that the video-add command will lose the name and register settings when the
power is turned off. Be sure to record those timing settings and consider creating a LogicLoader
script with the video-add command as a means to use your custom display between power
cycles.

If you are unsure as to what the display register settings need to be for your display, please
contact Logic PD for assistance.

NOTE: Some graphics controllers require the graphics controller to be disabled before setting the
timing registers. In that case, use the video-close command, change your video settings, use the
video-add command, and then use video-open with the new name to test out your settings.

http://support.logicpd.com/support/askaquestion.php

LogicLoader v2.5 User Guide

PN 1020107B Logic PD, Inc. All Rights Reserved. 29

9 CPU Pin Configuration

There may be times when it is necessary to prevent LogicLoader from using a pin on the CPU or
to redirect LogicLoader to use a different CPU pin. LogicLoader associates an ID with every CPU
pin it uses. Each pin ID can be configured to DNU (do not use) or configured to a different CPU
pin mux register.

9.1 Pin IDs and Configuration

LogicLoader is designed to operate on many platforms. As such, LogicLoader has a unique ID for
each pin function it needs. The command info pin is used to display the entire list of pin IDs within
LogicLoader and the pin mux register currently associated with the pin ID. The CPU pin mux
register address can be used to cross reference the exact hardware pin on the CPU using the
CPU programming manual for your processor; this document can be obtained from the CPU
manufacturer’s website. For convenience, the info pin command will also display the GPIO
number associated with that pin mux register. However, showing the GPIO number does not
necessarily mean the pin ID is configured as a GPIO pin.

Further information about a specific pin can be obtained by specifying the pin ID with the info pin
[pin id] command.

9.2 Disabling a Pin (DNU)

When there is a need to prevent LogicLoader from using a pin, the pin command can be used
with the argument dnu (do not use) and a pin id. From that point on, any LogicLoader access to
that pin will be ignored. Reinstating LogicLoader’s use of that pin can be accomplished using the
clear argument as in pin dnu <pin id> clear. In cases where it is necessary to inhibit
LogicLoader from using a pin prior to when the shell is available, or even before LogicLoader can
read in a script, a setup file can be created to inhibit the use of a pin. See the LogicLoader Setup
File document for more information on creating a setup file.

9.3 Reconfiguring a Pin

There may be times when a user may want to redirect the use of a pin to some other pin.
Consider, for example, a customer whose baseboard requires remapping the heartbeat LED used
on the Logic PD development kit baseboard to a different pin.

1. Identify the pin ID of the LED on the Logic PD baseboard.

a. From the schematic, identify the processor pin that is used to control the LED.

b. From the processor pin identifier of the CPU, look up the pin mux register that is used
to configure that pin in the CPU programming manual.

c. Finally, the pin ID can be obtained by using the info pin command at the LogicLoader
prompt. From the list, find the pin ID that is associated with the pin mux register
identified in the CPU programming manual.

2. Identify the destination pin mux address. Each pin on the CPU has an associated pin mux
address that identifies if the pin is to be used as a GPIO or dedicated to some other internal
hardware interface. This information is available in the CPU programming manual.

3. Identify the destination GPIO number. Since the LED operation is controlled by turning a
GPIO pin on or off, the GPIO number is needed.

4. Identify the mode of the pin mux. The pin mux mode is used to identify how the pin is to be
used. Generally, it can be used as GPIO or as one of several other processor peripherals.

LogicLoader v2.5 User Guide

PN 1020107B Logic PD, Inc. All Rights Reserved. 30

5. Identify the pull of the pin. Some processors support software configurable pull-up or
pull-down states. If your processor does not support pull states, simply put any value here, as
it will be ignored.

6. Identify the drive strength of the pin. Some processors support software-configurable drive
strength. If your processor does not support drive strength configuration, simply put any value
here or omit this argument, as it will be ignored.

7. Finally, supply this information to the LogicLoader shell command pin redefine, as in the
following example:

losh> pin redefine 1 0x4800215e 133 4 disable nominal

LogicLoader v2.5 User Guide

PN 1020107B Logic PD, Inc. All Rights Reserved. 31

10 The LogicLoader Setup lboot.sup File
The LogicLoader setup file is used in cases where LogicLoader needs to be configured/setup as
soon as possible. Such uses may involve inhibiting LogicLoader from ever using a pin, where
inhibiting such use at the losh prompt or in a script is simply too late in the boot process. Other
uses may include writing to registers immediately on power up. Future LogicLoader versions may
be used to configure shell UART baud rate, UART port number, SDRAM timing changes, etc.

10.1 Setup File Name

At boot time, one of the first things LogicLoader will do (prior to starting the system shell and most
drivers) is look in the boot directory for a file named lboot.sup. If this file name is found,
LogicLoader will process the keys contained within the file.

10.2 Setup File Keys

The setup file is loaded very early in the boot process. As such, the luxury of having a shell
parser is not available. To simplify parsing the setup file, LogicLoader uses keys to identify what
is being set. A list of keys can be found in Appendix A of this document.

10.3 Setup File Syntax

The setup file can be created and edited with any text editor. The file is in human readable form
(non-binary). A “#” symbol can be used at the front of a line to indicate a comment. The file
consists of a list of keys with associated parameters for each key. The number and definition of
the parameters will be specific to each key. Below is an example of a simple LogicLoader setup
file created using Windows Notepad:

lboot.sup example

This is an example LogicLoader setup file.

The lboot.sup file is the first file loaded by LogicLoader at
boot time. See the example lboot.lol file for more info
on boot file sequencing

This setup file will:
- Disable base board LED's
- Write values to memory

For each function, this file requires a key followed by
a list of parameters. Each key identifies the action to take.
Each key has a specific number of parameters required. Unknown
keys are ignored. Unknown parameters are ignored.

See the LogicLoader user manual for more information regarding the
lboot.sup file and a complete list of keys available.

Keys used:
Key Param 1 Param 2 Param 3 Description
1 Address Value Write byte to memory
2 Address Value Write word to memory
3 Address Value Write long to memory
4 pin ID Disable pin usage (dnu)

Key, Param 1, Param 2

LogicLoader v2.5 User Guide

PN 1020107B Logic PD, Inc. All Rights Reserved. 32

4, 1
4, 2
3, 0x81000000, 0xdeadbeaf
3, 0x81000004, 0x55aa5a5a

LogicLoader v2.5 User Guide

PN 1020107B Logic PD, Inc. All Rights Reserved. 33

11 Partitions

11.1 Partitions Overview

Theoretically, partitions can be created on every block device. However, the current
implementation of LogicLoader only allows users to create partitions on NOR and NAND devices.
Partitions on other devices, such as ATA, CompactFlash, and SD cards, can be used, but new
partitions cannot be created on those devices. There can be up to four partitions on a device;
however, extended partition tables are not supported.

Inodes are created for every partition at boot time. For example,

losh> ls /dev

will return the output similar to that included below:

 S : sdmmc0d 0
 S : sdmmc0c 0
 S : sdmmc0b 0
 S : sdmmc0a 0
 S : sdmmc0 0
 S : ata0d 0
 S : ata0c 0
 S : ata0b 0
 S : ata0a 0
 S : ata0 0
 S : nand0d 0
 S : nand0c 0
 S : nand0b 0
 S : nand0a 0
 S : nand0 0
 S : flash0d 0
 S : flash0c 0
 S : flash0b 0
 S : flash0a 0
 S : flash0 2097152
 S : null 0
 S : uart0 0

Within this example, nand0a is only an empty inode at this time and cannot be accessed (unless
previous partition tables have been created on the NAND device). Therefore,

losh> hd /dev/nand0a 512

will return the following error message:

Partition does not exist, type 0xff
error: hd: failed to open (/dev/nand0a)

LogicLoader v2.5 User Guide

PN 1020107B Logic PD, Inc. All Rights Reserved. 34

The most important thing to know about partition handling is that there is a RAM-based partition
table for every device (referred to as RAM-partition table in this document). At boot, LogicLoader
tries to fill this partition with data from the device. If it does not find a partition table on the device,
then it will be empty. This means that it will be filled with 0s or 1s, depending on the type of
device (the partition is filled with 1s for NOR and NAND flash devices; the partition is filled with 0s
for CompactFlash and SD cards).

Returning to the example above, the nand0a RAM-partition table is filled with 1s. The partition
driver reads the corresponding entry from the RAM-partition table and finds that its type is 0xff or
empty. This is why the error message states the partition does not exist.

So for every partition inode, there is a corresponding partition entry in the RAM-partition table.

11.2 Partition Creation in the RAM-Partition Table

Partitions can be created with the part-add command. For example,

losh> part-add /dev/nand0 b 1 2048

will create a partition entry in the nand0 RAM-partition table. Note that the second partition of the
device (nand0b) will be filled due to specifying b in the argument; this occurs because every
device can have up to four partitions, which are labeled from a to d. The partition will be added
beginning in block 1 and will have a length of 2048 blocks. For example, the following command
prints the RAM-partition table for the device given as a parameter:

losh> info part /dev/nand0

Note that it is not possible to use a parameter such as /dev/nand0a because this would instruct
the command to access the RAM-partition table for the nand0a partition, but partitions within
partitions are not supported. The following output table should be expected:

 ptype pname pstart plength
a: ff a 0xffffffff 0xffffffff
b: 6c b 0x00000001 0x00000800
c: ff c 0xffffffff 0xffffffff
d: ff d 0xffffffff 0xffffffff

Note that the ptype output for the nand0b is 0x6c; this verifies that the second entry is filled.
However, this has no further significance for the user; it is only used to indicate what partitions
have been created with the part-add command.

Now that the partition has been created, it can be accessed. Returning to the same example in
the previous section, executing the following command will now succeed:

losh> hd /dev/nand0b 512

LogicLoader v2.5 User Guide

PN 1020107B Logic PD, Inc. All Rights Reserved. 35

If successful, output similar to that included below should be seen.

0x80079310 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
0x80079320 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
0x80079330 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
0x80079340 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
0x80079350 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
0x80079360 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
0x80079370 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
0x80079380 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
0x80079390 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
0x800793a0 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
0x800793b0 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
0x800793c0 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
0x800793d0 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
0x800793e0 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
0x800793f0 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
0x80079400 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
0x80079410 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
0x80079420 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
0x80079430 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
0x80079440 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
0x80079450 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
0x80079460 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
0x80079470 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
0x80079480 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
0x80079490 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
0x800794a0 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
0x800794b0 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
0x800794c0 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
0x800794d0 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
0x800794e0 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
0x800794f0 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
0x80079500 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
losh>

You can create up to four partitions on a device, although these partitions cannot overlap.

11.3 Partition Removal from RAM-Partition Table

Partitions can be removed with the part-rem command. For example,

losh> part-rem /dev/nand0 b

will remove the second partition entry from the RAM-partition table. Removing this partition
means that the contents will be overwritten with 0s. For example,

losh> info part /dev/nand0

LogicLoader v2.5 User Guide

PN 1020107B Logic PD, Inc. All Rights Reserved. 36

will output the following table:

 ptype pname pstart plength
a: ff a 0xffffffff 0xffffffff
b: 0 b 0x00000000 0x00000000
c: ff c 0xffffffff 0xffffffff
d: ff d 0xffffffff 0xffffffff

This table shows that the second partition entry has been removed (it is all 0s). Attempting to
access this device will return an error message that the partition does not exist.

LogicLoader v2.5 User Guide

PN 1020107B Logic PD, Inc. All Rights Reserved. 37

12 File Systems

12.1 File System Types

Two file system types are supported in LogicLoader: FAT and YAFFS. YAFFS can only be
mounted on NOR and NAND flash devices, while FAT file systems (FATFS) can only be mounted
on ATA devices (e.g., CompactFlash cards) and SD cards.

12.2 Mount Command

The general syntax of the mount command is:

Mount <filesystem type> <device> <mount point> <flags>

File systems can be mounted on partitions or on a device. Wear-leveling file systems such as
YAFFS can achieve greater performance mounting the entire device. FATFS can be mounted on
a partition without loss of performance.

When a partition is added (using the part-add or mount command on a device), that region of
memory is marked as protected. Protected areas in LogicLoader are areas of memory that are
designated as in use. Whenever erasing a protected area, a warning will be presented on the
shell to confirm the action. To display protected areas of memory, see the LogicLoader v2.5
Command Description Manual regarding the info prot command.

NOTE: LogicLoader will attempt to warn the user when performing actions may result in loss of
data or unstable operation; however, LogicLoader will not restrict the user from performing such
actions.

Specific examples of the mount command will be presented in the sections below.

12.3 Mounting FATFS

LogicLoader is capable of reading and writing FAT16 file systems, while it can only read FAT32
file systems. If the application requires writing to a FAT file system, the file system should be
formatted as FAT16.

Use the following command to create a FATFS on the first partition of an ATA device:

losh> mount fatfs /dev/ata0a /cf

Use the following command to create a FATFS on the first partition of an SD card:

losh> mount fatfs /dev/sdmmc0a /sd

In the examples above, the FATFS will be read/write. If you would like to create a read-only file
system, you have to add a –ro flag at the end of the command line. For example, the following
command will create a read-only FATFS on the first partition of the ATA device:

losh> mount fatfs /dev/ata0a /cf –ro

LogicLoader v2.5 User Guide

PN 1020107B Logic PD, Inc. All Rights Reserved. 38

12.4 Mounting YAFFS
12.4.1 Mounting YAFFS on NAND

The following command will create a YAFFS file system on the first partition of a NAND device:

losh> mount yaffs /dev/nand0a /yaffs1

NOTE: Before executing the mount command, the partition should be created first. The entire
sequence would look like following:

losh> erase /dev/nand0 B0 B2048
losh> part-add /dev/nand0 a 1 2048
losh> mount yaffs /dev/nand0a /yaffs1

The mount command supports a special case where it can both create a partition and mount the
partition within a single command. To do this, specify the device rather than the partition; the
mount command will perform a part-add on the entire device and then mount it. If partitions
already exist on the device, the mount command will create a new partition from the last partition
to the end of the device. For example:

losh> erase /dev/nand0 B0 B2048
losh> mount yaffs /dev/nand0 /yaffs1

12.4.2 Mounting YAFFS on NOR

In order to mount YAFFS on a NOR flash device, an emulation layer must be created first. NOR
flash devices do not have chunks, so a layer is required that emulates the NAND storage type to
make the NOR device look like a NAND device. The emulation layer is created using the mount
command, as seen below.

losh> mount emu /dev/flash0a /femu

Just like with NAND, mounting YAFFS on NOR requires a partition to be created first. So the
entire sequence of commands to mount YAFFS on a NOR device would look like the following:

losh> part-add /dev/flash0 a 5 20
losh> erase /dev/flash0 B0 B20
losh> mount emu /dev/flash0a /femu1
losh> mount yaffs /femu1 /yaffs1

12.4.3 Unmounting YAFFS

LogicLoader supports the unmount command. However, the unmount command in LogicLoader
serves no useful purpose, except in the case of unmounting YAFFS. Unmounting YAFFS creates
a checkpoint which is written to the file system. A YAFFS checkpoint can greatly decrease the
time it takes for future mounts.

YAFFS is a journaling file system. So, when mounting YAFFS, YAFFS must look through the file
system history to identify which files are current. On large NAND devices, this may take a long

LogicLoader v2.5 User Guide

PN 1020107B Logic PD, Inc. All Rights Reserved. 39

time. To overcome this delay, the file system state information can be written to the file system.
On subsequent mounts, the file system state information is loaded via the checkpoint, rather than
by looking through all of the file’s histories. It should be noted that whenever the file system is
updated in any way, the checkpoint is invalidated.

LogicLoader v2.5 User Guide

PN 1020107B Logic PD, Inc. All Rights Reserved. 40

13 Yet Another Flash File System (YAFFS)

Please be aware that the YAFFS user interface was changed in LogicLoader version 2.4. The
legacy user interface is still supported for backwards compatibility, but the new interface—as
described in this section—should be used whenever possible.

13.1 YAFFS Overview

YAFFS was developed by a company named Aleph One Limited and incorporated by Logic PD
into the LogicLoader software program.

Logic PD selected YAFFS to fill its file system requirements due to the flexible nature of the
program, its licensing scheme, and the fact that it is available for Linux, Windows CE, and other
operating systems. YAFFS also allows LogicLoader and an OS to view and modify the same
partition. It also makes it easier for customers to work with embedded flash technology and
perform in-field updates. For example, in Linux it is customary to have the Linux kernel reside in
/boot/vmlinux. So, using the commands below allows LogicLoader to mount, load, and boot the
Linux kernel from the partition that is accessible from the Linux kernel:

losh> part-add /dev/nand0 a 9 500
losh> mount yaffs /dev/nand0a /nand-root
losh> load elf /nand-root/boot/vmlinux
losh> exec

NOTE: The partition entries for YAFFS partitions are not persistent—they must be restored on
each boot. However, the partitions and data remain persistent.

13.2 Working with YAFFS in LogicLoader
13.2.1 Developing a Partition Scheme

In LogicLoader, YAFFS is mounted on partitions; there can be up to four partitions at a time on a
NAND or NOR device.

Partitions are created with the part-add command, as in the examples below. (Partition handling
is discussed in detail in Section 11 of this document.) Customers should design a partitioning
scheme which suits their individual needs; however, for the purpose of providing examples within
this document, the following partitioning scheme will be assumed for NOR flash:

■ A partition named boot which contains a bitmap and OS image and spans the address space
below:

□ * start: block 5

□ * length: 6 blocks (384kB) [remember that block sizes vary depending upon device; use
the info mem command to display proper block size]

■ A partition named data which contains customer-specific data.

□ * start: block 11

□ * length: 16 blocks (1 MB)

LogicLoader v2.5 User Guide

PN 1020107B Logic PD, Inc. All Rights Reserved. 41

These two partitions are created with the following commands:

losh> part-add /dev/flash0 a 5 6
losh> part-add /dev/flash0 b 11 16

For the purpose of providing examples within this document, the following partitioning scheme will
be assumed for NAND flash:

■ A partition named boot which contains a bitmap and operating system image and spans the
block range below:

□ * start: block 10

□ * length: 256 blocks (8 MB, assuming 16kB block size)

■ A partition named data which contains customer specific data.

□ * start: block 266 (abuts boot partition)

□ * length: 128 blocks (4 MB, assuming 16kB block size)

These two partitions are created with the following commands:

losh> part-add /dev/nand0 a 10 256
losh> part-add /dev/nand0 b 266 128

13.2.2 Formatting YAFFS Partitions

All file systems need to be formatted before they can be mounted. Because YAFFS was designed
from the ground up to work with embedded flash technologies, it understands an erased flash
device to be both formatted and empty. To prepare your partition for mounting, use LogicLoader's
erase command to erase the area of flash where the partition is to be located.

Using the example partition scheme in Section 13.2.1 above, the partitions could be prepared for
initial use by erasing the regions of the flash device spanned by them.

For a NOR example

losh> erase /dev/flash0 B5 B6
losh> erase /dev/flash0 B11 B16

For a NAND example:

losh> erase /dev/nand0 B10 B256
losh> erase /dev/nand0 B266 B128

WARNING: Erasing flash blocks that will be used for YAFFS partitions will erase everything in
those areas of flash. It is not required to format the partition every time the device is rebooted; the
partition should only be formatted when an entirely new YAFFS partition is created or when the
data on a stored partition needs to be completely erased. For NAND-based devices, the first few
blocks of NAND (the actual number of blocks is dependent on the NAND device) are used to hold
the /lboot partition which is where LogicLoader resides. Modifying data in this partition can cause
the board to fail to boot.

LogicLoader v2.5 User Guide

PN 1020107B Logic PD, Inc. All Rights Reserved. 42

13.2.3 Mounting the Partition

To mount a partition, the mount command is used, as discussed in Section 12.4. This command
takes the following arguments:

■ <filesystem type> - the type of file system being mounted (‘yaffs’ here)
■ <device> - the device on which the YAFFS partition is mounted
■ <mountpoint> - the name of the YAFFS partition

For example, to mount YAFFS on NAND:

losh> mount yaffs /dev/nand0a /boot
losh> mount yaffs /dev/nand0b /data

NOTE: As previously discussed, you cannot mount YAFFS directly on NOR flash devices. First,
you have to mount an emulation layer on top of the NOR flash device, then mount YAFFS on the
emulation layer.

For example:

losh> mount emu /dev/flash0a /femu1
losh> mount emu /dev/flash0b /femu2

losh> mount yaffs /femu1 /boot
losh> mount yaffs /femu2 /data

13.2.4 Accessing YAFFS Partitions in an OS

A key advantage of the read/write YAFFS file system capability at the LogicLoader level is the
ability to share data stored in the file system with an OS environment. If an OS environment (e.g.,
Linux, Windows CE, VxWorks) implements YAFFS as an OS-accessible file-system, any files
available to LogicLoader are also available to the OS and vice-versa.

This contributes to significant benefits in the areas of system software upgrades (including OS
upgrades), splash screen changes, script modifications, and other boot-time data that may need
to be updated.

13.3 Summary

To use the YAFFS file system within LogicLoader, follow these steps:

1. Format the partitions by erasing the associated flash blocks.

2. Decide on a partitioning scheme and create partitions.

3. Mount the partitions using the mount command (first mount an emulation layer for NOR
flash devices).

Steps 2 and 3 must be repeated every time the system is booted. If the YAFFS partitions are
frequently accessed, consider implementing Steps 2 and 3 via a boot script. Step 1 only needs to
be performed when creating a brand new partition or when the contents of an existing partition
need to be completely erased.

NOTE: A partition is persistent. Re-adding a partition at boot time restores access to
previously-saved data. Flash blocks must be erased to permanently remove a partition;
otherwise, it can be recovered across boots.

LogicLoader v2.5 User Guide

PN 1020107B Logic PD, Inc. All Rights Reserved. 43

Keep in mind the following when working with YAFFS and LogicLoader:

■ Ensure partitions do not overlap each other or LogicLoader.
■ Ensure that a partition is erased before it is mounted for the first time.

NOTE: The legacy YAFFS mounting scheme is still supported for backwards compatibility, but its
use is discouraged.

LogicLoader v2.5 User Guide

PN 1020107B Logic PD, Inc. All Rights Reserved. 44

Appendix A: Setup File Keys

Key Function Parameter 1 Parameter 2 Parameter 3 Parameter 4 Parameter 5
1 Write Byte Address Value - - -
2 Write Word Address Value - - -
3 Write Long Address Value - - -
4 Disable Pin Pin ID - - - -
5 - - - - - -

LogicLoader v2.5 User Guide

PN 1020107B Logic PD, Inc. All Rights Reserved. 45

Appendix B: LwIP License Agreement

LogicLoader uses the open source LwIP stack for networking support. The LwIP license requires
the inclusion of the following license to satisfy Condition 2 below:

Copyright (c) 2001, 2002 Swedish Institute of Computer Science. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. The name of the author may not be used to endorse or promote
products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR “AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
OF SUCH DAMAGE.

This file is part of the lwIP TCP/IP stack.

Author: Adam Dunkels <adam@sics.se>

http://www.bigwhistlestudios.com/webmail/compose.php?to=adam@sics.se

	Revision History
	Table of Contents
	Table of Figures and Tables
	1 Introduction to LogicLoader™
	1.1 Overview
	1.2 Differences between Versions 2.4 and 2.5
	1.3 Product Features
	1.4 Acronyms
	1.5 Technical Specifications
	1.6 LogicLoader v2.5 Command Description Manual
	1.7 LogicLoader User Manual Addendums
	1.8 LogicLoader Labs

	2 LogicLoader
	2.1 LogicLoader Overview
	2.2 LogicLoader Basics
	2.3 Using LogicLoader for Debugging
	2.4 Manufacturing Advantages with LogicLoader

	3 The LogicLoader Shell
	3.1 LogicLoader Shell Overview
	3.2 LogicLoader Shell Basics
	3.2.1 Using the LogicLoader Shell
	3.2.1.1 Understanding the ls Command

	4 Flash Devices and LogicLoader
	4.1 NOR Addressing
	4.2 Booting from NOR
	4.3 Booting from NAND
	4.4 Booting from SD/MMC
	4.5 NAND Addressing
	4.6 NAND Bad Blocks
	4.7 NAND Programming
	4.7.1 Skip Bad Block Method
	4.7.2 YAFFS Overview

	5 Block Devices
	5.1 Using Block Reference
	5.2 burn
	5.3 dd
	5.4 erase
	5.5 info
	5.6 update

	6 Program Loading
	6.1 Understanding the load Command
	6.1.1 Using TFTP as a Source

	6.2 Understanding the burn Command
	6.3 Understanding the jump and exec Commands
	6.3.1 The jump Command
	6.3.2 The exec Command
	6.3.3 Command Example Using load and burn with jump or exec

	6.4 Understanding the update Command

	7 Scripting
	7.1 Scripting Overview
	7.1.1 Scripting Rules

	7.2 Launching Scripts
	7.3 Persistent Script Storage
	7.3.1 Persisting Scripts with the echo Command
	7.3.2 Serial EEPROM Scripts

	7.4 Settings that Affect Scripts
	7.5 Using Boot-time Scripting
	7.5.1 Boot-time Script Guidelines
	7.5.2 Exiting a Boot Script
	7.5.3 Understanding the echo Command

	7.6 Conditional Scripting and Variables
	7.6.1 Variables
	7.6.1.1 Variable Names
	7.6.1.2 Variable Assignment
	7.6.1.3 Internal Representation
	7.6.1.4 De-referencing a Variable
	7.6.1.5 Built-in Variables
	7.6.1.6 Saving and Loading Variables
	7.6.1.6.1 Variable File Format
	7.6.1.6.2 Example File
	7.6.1.6.3 Loading Variables at Boot Time

	7.6.2 Conditional Scripting
	7.6.2.1 Expressions
	7.6.2.2 Using Shell Variables
	7.6.2.3 Escaping the Variable Character
	7.6.2.4 Comments
	7.6.2.5 Numbers

	8 Video Interface
	8.1 Video Interface Overview
	8.2 Using the Video Interface after Initialization
	8.3 Using a Custom Video Display
	8.3.1 The video-add Command

	9 CPU Pin Configuration
	9.1 Pin IDs and Configuration
	9.2 Disabling a Pin (DNU)
	9.3 Reconfiguring a Pin

	10 The LogicLoader Setup lboot.sup File
	10.1 Setup File Name
	10.2 Setup File Keys
	10.3 Setup File Syntax

	11 Partitions
	11.1 Partitions Overview
	11.2 Partition Creation in the RAM-Partition Table
	11.3 Partition Removal from RAM-Partition Table

	12 File Systems
	12.1 File System Types
	12.2 Mount Command
	12.3 Mounting FATFS
	12.4 Mounting YAFFS
	12.4.1 Mounting YAFFS on NAND
	12.4.2 Mounting YAFFS on NOR
	12.4.3 Unmounting YAFFS

	13 Yet Another Flash File System (YAFFS)
	13.1 YAFFS Overview
	13.2 Working with YAFFS in LogicLoader
	13.2.1 Developing a Partition Scheme
	13.2.2 Formatting YAFFS Partitions
	13.2.3 Mounting the Partition
	13.2.4 Accessing YAFFS Partitions in an OS

	13.3 Summary

	Appendix A: Setup File Keys
	Appendix B: LwIP License Agreement

