

PN 1011071A Logic Product Development Company, All Rights Reserved i

Methods for Loading Custom Software on the
i.MX31 and i.MX27 SOM-LV in Manufacturing
Application Note 390

Logic // Embedded Product Solutions
Published: October 2008

Abstract
This Application Note explains the different methods to load custom software on i.MX31 and
i.MX27 SOM-LV.

This document contains valuable proprietary and confidential information and the attached file contains source code, ideas, and
techniques that are owned by Logic Product Development Company (collectively “Logic’s Proprietary Information”). Logic’s
Proprietary Information may not be used by or disclosed to any third party except under written license from Logic Product
Development Company.

Logic Product Development Company makes no representation or warranties of any nature or kind regarding Logic’s Proprietary
Information or any products offered by Logic Product Development Company. Logic’s Proprietary Information is disclosed herein
pursuant and subject to the terms and conditions of a duly executed license or agreement to purchase or lease equipment. The only
warranties made by Logic Product Development Company, if any, with respect to any products described in this document are set
forth in such license or agreement. Logic Product Development Company shall have no liability of any kind, express or implied,
arising out of the use of the Information in this document, including direct, indirect, special or consequential damages.

Logic Product Development Company may have patents, patent applications, trademarks, copyrights, trade secrets, or other
intellectual property rights pertaining to Logic’s Proprietary Information and products described in this document (collectively “Logic’s
Intellectual Property”). Except as expressly provided in any written license or agreement from Logic Product Development
Company, this document and the information contained therein does not create any license to Logic’s Intellectual Property.

The Information contained herein is subject to change without notice. Revisions may be issued regarding changes and/or additions.

© Copyright 2008, Logic Product Development Company. All Rights Reserved.

Revision History
REV DESCRIPTION APPROVAL DATE
A Initial release MAA 10/31/08

AN 390 Loading Custom SW in Manufacturing

PN 1011071A Logic Product Development Company, All Rights Reserved ii

Table of Contents

Revision History ... i
1 Introduction ... 1
2 Basics .. 1

2.1 Examples and Nomenclature within this Document .. 1
2.2 LogicLoader Functionality Summary .. 1
2.3 NOR Flash Overview ... 2
2.4 NAND Flash Overview ... 2
2.5 LogicLoader ‘dd’ command .. 4

3 Standard Products ... 5
3.1 LogicLoader Scripting Example ... 5

4 Custom Product .. 6
4.1 Creating a Custom NOR Flash Software File .. 7

4.1.1 Creating the NOR raw programming file ... 7
4.1.2 Creating the NOR raw programming file without LogicLoader .. 10

4.2 Custom NAND Flash Software .. 10
4.2.1 Creating the NAND raw programming file ... 10
4.2.2 Creating the NAND raw programming file without LogicLoader .. 14

5 Summary ... 14
6 References .. 14

AN 390 Loading Custom SW in Manufacturing

PN 1011071A Logic Product Development Company, All Rights Reserved 1

1 Introduction
Customers planning to use the i.MX31 or i.MX27 SOM-LVs in their end-product have a few
choices to get their exact software configuration on the SOM for manufacturing. This step in the
product cycle is typically not thought about until the end of development, once the manufacturing
team is ramping up. If this step can be considered earlier in the process, it can save time and
money, as the details can be established during the design cycle.

There are two approaches for purchasing SOMs: buying a standard configuration SOM or a
custom configured SOM. Buying a standard configuration SOM means the SOM will ship with
LogicLoader, which is the boot code for the system and provides the essential functionality to
program more software onto the board. Buying a custom configured SOM follows Logic’s NPI
(New Product Introduction) process. The process provides the opportunity for custom software to
be loaded onto the SOM when it is manufactured, which means the SOM will ship with that
custom software preloaded.

This document will detail these two approaches and describe how the software is loaded onto the
SOM for each specific case.

2 Basics
The i.MX31 and i.MX27 SOMs include two components that can be programmed: on-board
NAND and NOR flash chips. The standard i.MX SOM configurations ship with the LogicLoader
bootloader programmed into the NOR flash and an empty NAND flash. By default, both i.MX
SOMs boot from the NOR flash. LogicLoader allows for burning code to NOR and NAND flash
from several sources and then automatically run that software after a power-cycle. The full
functionality of LogicLoader is covered in the LogicLoader User’s Manual, LogicLoader User
Manual Addendum, and LogicLoader Command Description Manual documents available on the
downloads page for each SOM.

2.1 Examples and Nomenclature within this Document
■ All examples in this document require LogicLoader version 2.4.0 or later, and are written for

the i.MX31.

■ A difference to keep in mind between the i.MX31 and i.MX27 is the NOR flash address. The
i.MX31 NOR flash is at address 0xA000_0000; the i.MX27 NOR flash is at address
0xC000_0000.

■ The use of i.MX in this document refers to both the i.MX31 and i.MX27.

2.2 LogicLoader Functionality Summary
The following is a brief summary of LogicLoader functionality useful for manufacturing:

■ Loading and/or running files from SD memory, CompactFlash memory, serial, and TFTP.

■ Burning and creating raw NOR and NAND flash memory files.

■ YAFFS – File system on flash (block management, wear-leveling, sharing files with Operating
Systems, .etc.).

■ Scripting – Auto-run, conditional operations (if/else), variables, etc.

■ Video – Splash screens, instruction feedback with bitmaps, custom display support.

■ Setting and reading GPIO for conditional operations (jumpers, configuration differences).

AN 390 Loading Custom SW in Manufacturing

PN 1011071A Logic Product Development Company, All Rights Reserved 2

2.3 NOR Flash Overview
The standard configuration of NOR flash on the i.MX SOM is 2 MB and acts as the default boot
medium. It is 16 bits wide, a linear memory-mapped device, and has a typical SRAM layout when
read. Programming NOR flash requires a specific algorithm. Custom SOM configurations can
change the amount of NOR flash to 0 or 4 MB if necessary; however, this change must be
defined within the NPI process.

More information about NOR flash addressing and programming can be found in the LogicLoader
User’s Manual.

The standard i.MX SOM uses part JS28F160C3BD70 from Numonyx, a 2 MB chip (16 Mbit) that
supports a minimum 100,000 erase cycles per block. A wear-leveling file system is recommended
for applications that require frequent writes to NOR flash.

2.4 NAND Flash Overview
The standard configuration of NAND flash on the i.MX SOM is 64 MB and uses an 8 bit memory
bus. NAND flash does not look like a typical SRAM layout when read, which complicates
programming at manufacturing. Because NAND flash is made up of blocks, it requires both read
and write algorithms. Custom i.MX SOMs can accommodate 0, 16, 32, 64 MB, and higher if
necessary; however, a change to NAND flash configuration must be defined within the NPI
process. Booting from NAND is not supported by LogicLoader.

More information about NAND flash addressing, programming, and block management can be
found in the LogicLoader User’s Manual.

Important Note: NAND flash can and will have bad blocks. The standard i.MX SOM uses part
NAND512W3A2CN6E from Numonyx, a 64 MB chip (512 Mbit). The datasheet NAND512-A2C
Revision 3 from Numonyx specifies that out of 4096 blocks (1 block = 16,384 bytes = 16 KB), the
minimum valid blocks over the lifetime of the chip is 4016. That translates to potentially 80 blocks
that could be bad when shipped or that can develop over time. 80 blocks of 4016 is ~1.95% or
~1.25 MB of 64 MB. This is found in Table 4: ‘Valid Blocks’ of the NAND512-A2C Revision 3
datasheet. Figure 2.1, below, diagrams the arrangement of blocks and pages within a NAND
device.

AN 390 Loading Custom SW in Manufacturing

PN 1011071A Logic Product Development Company, All Rights Reserved 3

Figure 2.1: NAND Flash Block Management

It is extremely important to keep the potential of bad blocks in mind when using a file system on
the NAND device. Plan for 2% of the blocks on device to go bad or already be bad. Keep a
reserved space of 1.25 MB on each partition, as the file system will potentially need to use this
space when moving files around to manage bad blocks. If multiple partitions are used, each
partition must have 80 blocks reserved (~1.25MB) as those 80 bad blocks could occur anywhere
on the device, potentially even all in one partition. The Numonyx datasheet also states that the
device supports a minimum of 100,000 program/erase cycles per block. Any file system running
on the NAND flash must have bad block management and wear-leveling implemented.

Because of the potential complexity of bad block management, Logic recommends only using
one partition that covers the entire size of the NAND device. If multiple partitions are used, each
must plan for 80 blocks to go bad, thereby doubling the number of ‘reserved’ blocks required, as
well as additional metadata files needed. Figure 2.2, below, shows at a high level how bad blocks
can be found in a NAND device. The figure also shows how two NAND devices with the same
files can have the data arranged differently around bad blocks.

AN 390 Loading Custom SW in Manufacturing

PN 1011071A Logic Product Development Company, All Rights Reserved 4

Figure 2.2: Locating Bad Blocks in NAND Flash

2.5 LogicLoader ‘dd’ command
The LogicLoader User Manual has a section dedicated to block devices, like NOR and NAND
flash, including commands that can be used on these devices. The ‘dd’ command is a common
Unix program that is available on almost every OS and toolset. LogicLoader also has a version of
this command, which is useful for creating manufacturing programming files. The command’s
purpose is for conversion and copying of low-level raw data; it copies every piece of information
on a device, including file system data, as opposed to the ‘cp’ command, which simply copies the
active files on a device.

Logic has added some extra functionality to the ‘dd’ command, including the ability to skip bad
blocks (skip_bad), which is active by default. The ability to skip bad blocks is important when
copying from and to NAND flash devices.

Usage:

dd if:<source file/device> of:<destination file/device> [count:<
chunks> ibs:<bytes> obs:<bytes> is:< bytes> os:< bytes> seek:<blocks>
skip:<blocks> skip_bad:<0|1> bs:<bytes>]

 Copies <count> number of pages/chunks from <if> to <of>
 <ibs>/<obs>: The chunk size (in bytes) can be set with the <ibs> and

<obs> parameters for source/destination file or with <bs> which sets
<ibs>=<obs>=<bs>

 <bs>: forces <ibs>=<obs>=<bs> block size in bytes
 <skip>: skips <skip> number of <ibs>-sized blocks at the beginning

of the source file (<if>)
 <seek>: skips <seek> number of <obs>-sized blocks at the beginning

of the destination file (<of>)
 <skip_bad>: Choose to skip bad blocks (default=1) (Only set to 0 for

looking at bad block info)
 <is>/<os>: Skips <is>/<os> bytes after every block in the

source/destination file.
 Only the <if> and <of> parameters are required, the others will be

set to their default:
 Defaults:

o count=1

AN 390 Loading Custom SW in Manufacturing

PN 1011071A Logic Product Development Company, All Rights Reserved 5

o skip_bad=1
o ibs/obs = 512
o all the other options are set to 0

3 Standard Products
All standard configuration SOMs ship with LogicLoader installed; the bootloader software that
boots to a command prompt and is accessible via the debug serial port UARTA. Customers can
use a PC and a terminal emulation program (such as Tera Term) to send LogicLoader commands
and scripts over the serial port to the SOM. These commands and scripts can be used to load
custom software to the SOM. The LogicLoader User’s Manual has more information on the
functionality and commands available; additionally, Sections 4.1 and 4.2 in this document explain
how to create raw programming files for NOR and NAND flash.

3.1 LogicLoader Scripting Example
An example would be to use Tera Term to send a script to LogicLoader. The Tera Term ‘File’
menu has a command called ‘Send File’ which allows for a file to be sent from the PC to the
SOM. This file can be a text file with LogicLoader commands, which is essentially a script.

Figure 3.1: ‘Send File’ Command

The script could look something like this:

mount fatfs /dev/sdmmc0a /sd -rw;
video-open 5 16;video-clear w;
source /sd/autoscript.txt;
exit;

The commands in this script mount an SD card, enable the video (for user feedback), and then
run another script that is located on the SD card.

The ‘autoscript.txt’ file located on the SD card could look something like this:

pass=1;
bitmap /sd/erasing_nand_flash.bmp;
erase B0 B4096 /dev/nand0;
if($?)
 bitmap /sd/erase_fail.bmp;
 echo "ERROR, erase failed";
 pass=0;
else
 echo "Loading NAND File";
 bitmap /sd/loading_nand_flash.bmp;
 dd if:/sd/NAND0.IMG of:/dev/nand0 count:128512 ibs:528 obs:528;

AN 390 Loading Custom SW in Manufacturing

PN 1011071A Logic Product Development Company, All Rights Reserved 6

 bitmap /sd/complete_nand_flash.bmp;
endif;
echo "DONE";
if($pass)
 echo "PASSED";
 bitmap /sd/passed.bmp;
else
 echo "FAILED";
 bitmap /sd/failed.bmp;
endif
exit;

This script erases the NAND flash and copies the raw file into NAND flash, showing bitmaps to
the user indicating the current stage of the process. A raw NAND flash file does not have to be
used, instead the script could mount a YAFFS partition and copy individual files over to the
partition.

Figure 3.2: Example Script Output

The examples presented here are very basic; using the associated LogicLoader documentation,
more advanced loading schemes can be created. Besides SD memory cards, CompactFlash and
TFTP are also available as download mediums. For example, the initial script presented above
could use TFPT and would look like this:

ifconfig sm0 192.168.0.2 255.255.255.0 192.168.0.1;
video-open 5 16;video-clear w;
source /tftp/192.168.0.1:autoscript.txt;
exit;

4 Custom Product
Logic can also build custom i.MX SOM configurations. The NPI (New Product Introduction)
process provides customers the ability to specify unique hardware populations and/or preload
custom software on the SOM. This means the SOM will meet their exact needs when it arrives
from the manufacturers. To proceed with the custom SOM NPI approach, minimum requirements
must be met; a Logic sales contact can provide additional information and the NPI process
document.

If the customer decides to have custom software loaded on the SOM during manufacturing, that
software needs to be sent to Logic. On the i.MX31 and i.MX27 SOMs, this may include the NOR
flash and/or NAND flash contents.

The following is a list of important aspects to consider about custom software on the i.MX SOM:

AN 390 Loading Custom SW in Manufacturing

PN 1011071A Logic Product Development Company, All Rights Reserved 7

1. Larger file sizes = longer time to load = higher manufacturing costs and lead times.
Understand how much of the memory is being used to be sure the manufacturing time is
minimized.

2. NAND flash can have bad blocks. As mentioned in Section 2.4 above, for a 64 MB NAND
device plan to reserve 80 blocks per partition to manage bad blocks.

3. A change to custom software preloaded on a SOM requires changing the model number,
creating a manufacturing ECO (engineering change order), initiating the NPI process to build
new first articles, and managing a new model number with distribution. This can cause
several issues, including increased lead time, associated costs for the changes, and
configuration management with distributors.

To help avoid these issues, it may make sense to use a basic, small software file with the
only purpose of being updated later in the end-product manufacturing process. This file
consist of a LogicLoader configuration block containing a script to automatically mount an SD
card and run a script from the SD card or it may be a basic OS with update features built-in.
The benefit of this approach is the likelihood of never having to change the custom software.

In the case of an auto-running boot script, there is only one thing Logic would ever burn into
NOR flash: LogicLoader and the configuration block that contains the script. When the boards
are received by the customer, the initial boot-up will initiate the auto-run script to look for the
installation script on an SD card, CompactFlash, or over TFTP, and then load all the software
on the SOM. This process allows the customer to more easily manage software updates at
their manufacturer.

4. Plan for an “in-field” update process. How will the final product be updated once it is released
to the field? Can this update process also be used during manufacturing? If the update
software is already in place on the custom SOM, software updates can be managed
effectively at manufacturing.

4.1 Creating a Custom NOR Flash Software File
In order for Logic to program the NOR flash, a raw program file must be created that is essentially
a snapshot of the contents in NOR flash memory. LogicLoader commands can be used to create
this file.

4.1.1 Creating the NOR raw programming file

What you will need:

■ Two i.MX SOMs. (Two SOMs provide confirmation that the file is downloading correctly).

■ A baseboard, like the Zoom i.MX LITEKIT baseboard, that has a CompactFlash or SD slot.

■ A CompactFlash or SD card, large enough for a 2 MB file (the following procedure will
assume use of an SD card).

■ A serial connection to a PC to use LogicLoader’s command prompt.

Procedure:

1. Set up the SOM with the software in NOR flash exactly how it is to be for manufacturing. This
includes LogicLoader, the config block (if used), and any other data that is stored in NOR
flash. Note: If LogicLoader does not reside in NOR flash, see Section 4.1.2 below for
preliminary steps before continuing with the procedure below.

2. Boot the board. If the board automatically runs a script at boot, use the ‘q’ command to break
into the LogicLoader command prompt.

AN 390 Loading Custom SW in Manufacturing

PN 1011071A Logic Product Development Company, All Rights Reserved 8

Figure 4.1: Use of the ‘q’ Command

3. If applicable, check the NOR flash content to make sure it is correct, including the
LogicLoader version. In this example, also check the boot script located in the configuration
block to make sure it is correct.

losh> cat /dev/config
LOLOmount fatfs /dev/sdmmc0a /sd -rw;source /sd/mfgcript.txt;exit;

4. Check the details of the memory configuration, which gives necessary information for
commands used in steps below. In this case, the base address of NOR flash (flash0) is
0xA000_0000 (i.MX31-specific) and contains 32 blocks. The size is 32 blocks multiplied by
65,536 bytes per block, which equals 2,097,152 bytes (0x0020_0000 hex). The NAND
information is not necessary for this NOR flash file creation

losh> info mem
Configuration of /dev/flash0:
 base_address: a0000000
 num_blocks: 32
 bytes_per_block: 65536
 has_chunks: 0
Configuration of /dev/nand0:
 num_blocks: 4096
 bytes_per_block: 16896
 has_chunks: 1
 NAND_0 block 0 is marked bad by YAFFS
 num_chunks: 131072
 chunks_per_block: 32
 bytes_per_chunk: 528
 bytes_per_spare: 16

5. Mount the SD card as read/write.

losh> mount fatfs /dev/sdmmc0a /sd -rw

6. Extract the raw file using the ‘dd’ command. (Information about the ‘dd’ command can be
found in the LogicLoader User’s Manual.) This example assumes a copy of all 2 MB of NOR
flash (size = 0x0020_0000 bytes, or 32 blocks, which is used by the ‘dd’ command).

losh> dd if:/dev/flash0 of:/sd/FLASH0.IMG count:32 ibs:65536 obs:65536
100%
in:32 out:32 skipped: in:0 out:0 (r:0)

7. Perform a check with an md5sum on the memory in NOR flash and the raw file created to be
sure they match.

losh> md5sum 0xa0000000 0x00200000
f7cdc6b27e81b40ca22c42d4d1c2c3c3
losh> md5sum /sd/FLASH0.IMG

AN 390 Loading Custom SW in Manufacturing

PN 1011071A Logic Product Development Company, All Rights Reserved 9

f7cdc6b27e81b40ca22c42d4d1c2c3c3

8. Using the second SOM, mount the SD card and use the ‘load raw’ and ‘burn’ commands to
burn the raw file. (Note: Make sure that the board does not lose power during this time; any
interruption could cause the burn to fail and the board would no longer be able to boot
properly without using a JTAG device to reprogram.) LogicLoader will ask for confirmation
that parts of memory can be erased, type ‘y’ and ‘confirm’ at these steps. The commands
should look like this and the output of this sequence is shown in Figure 4.2 below:

losh> mount fatfs /dev/sdmmc0a /sd -rw
losh> load raw 0xa0000000 0x00200000 /sd/FLASH0.IMG
losh> burn

Figure 4.2: Example Output of Burning Raw File to Flash

9. If erasing and burning come back at 100% and 2097152 bytes (0x00200000) were written,
the board can be powered off and then back on. The board should run code as expected for
production. A check for correct implementation can be performed by again breaking into the
LogicLoader command prompt using the ‘q’ command and performing an md5sum check.

AN 390 Loading Custom SW in Manufacturing

PN 1011071A Logic Product Development Company, All Rights Reserved 10

Figure 4.3: Md5sum Check

10. Logic will need the FLASH0.IMG file. Send Logic a Zip file containing the FLASH0.IMG file
and a description of what is in the file, including addresses if possible.

4.1.2 Creating the NOR raw programming file without LogicLoader

If LogicLoader is not a part of the NOR flash contents because a custom bootloader is used,
preliminary steps to extract the raw file are required. Logic recommends using either a JTAG
device or the custom bootloader code to extract the raw file.

If using a JTAG device, a RAM version of LogicLoader can extract the raw file.

1. Connect the JTAG device, like an Abatron BDI2000, to the SOM.

2. Boot the SOM using the JTAG device.

3. Load and run the SRAM setup .elf file (10XXXXX _SRAM_boot.elf) available in the
LogicLoader release package.

4. Load and run the RAM LogicLoader (10XXXXX_RAM_lolo.elf) from the release package

5. From this point, follow the procedure in Section 4.1.1 above.

4.2 Custom NAND Flash Software
In order for Logic to program the NAND flash of a custom SOM, a raw program file must be
created that is essentially a snapshot of the NAND flash memory contents. LogicLoader
commands can be used to create this file. Note that this raw image will not look like a typical RAM
memory, as the block and page structure complicates things and the NAND flash can contain a
file system.

4.2.1 Creating the NAND raw programming file

What you will need:

■ Two i.MX SOMs. (Two SOMs provide confirmation that the file is downloading correctly).

■ A baseboard, like the Zoom i.MX LITEKIT baseboard, that has a CompactFlash or SD slot.

■ A CompactFlash or SD card, large enough for the full size of NAND plus the spare area
bytes, approximately 65 MB for a 64 MB NAND chip (the following procedure will assume use
of an SD card).

■ A serial connection to a PC to use LogicLoader’s command prompt.

Procedure:

Important Note: If using a file system on the NAND device (such as YAFFS), Logic
recommends erasing the NAND flash, placing the files on that device, then creating the

AN 390 Loading Custom SW in Manufacturing

PN 1011071A Logic Product Development Company, All Rights Reserved 11

NAND raw programming file. When a file is erased, moved, or modified, most file systems will
retain data in the file system and simply update the file meta data. To ensure that no
unnecessary or unwanted data is in the NAND raw programming image, Logic recommends
starting with an erased flash device. It is also important that the files on the partitions be at
the beginning of the partition. To erase the entire 64 MB of NAND flash, use the following
command:

losh> erase B0 B4096 /dev/nand0;

1. Set up the SOM with the software in NAND flash exactly how it is to be for manufacturing.
This includes LogicLoader, the config block (if used), file system partitions, and any other
data that is stored in NAND flash. Note: If you are not using LogicLoader, see Section 4.2.2
below for preliminary steps before continuing with the procedure below.

2. Boot the board. If the board automatically runs a script at boot, use the ‘q’ command to break
into the LogicLoader command prompt.

3. Check the details of the memory configuration, which gives necessary information for
commands used in steps below. In this case, the page size is 512 bytes (bytes per chunk
minus bytes per spare) and the spare size is 16 bytes. The total space available to the user is
the page size (512 bytes) multiplied by the number of chunks (131,072), which equals
67,108,864 bytes (64 MB, 0x0400_0000 hex). The total size does not include the spare area,
which adds 16 bytes per page (chunk). The NOR information is not necessary for this NAND
flash file creation

losh> info mem
Configuration of /dev/flash0:
 base_address: a0000000
 num_blocks: 32
 bytes_per_block: 65536
 has_chunks: 0
Configuration of /dev/nand0:
 num_blocks: 4096
 bytes_per_block: 16896
 has_chunks: 1
 NAND_0 block 0 is marked bad by YAFFS
 num_chunks: 131072
 chunks_per_block: 32
 bytes_per_chunk: 528
 bytes_per_spare: 16

4. This example will use the entire size of the NAND flash (64 MB), although if it is known that
the file system on the device is smaller than the total size, it is recommended to use the
known file system size instead. This can save significant time during production when burning
hundreds or thousands of boards.

To create the NAND raw programming file it is necessary to know the total number of pages
of the NAND contents. This example uses the entire 64 MB or 67,108,864 bytes (4096
blocks). To plan for the possibility that this partition could have 80 bad blocks, only 4016

AN 390 Loading Custom SW in Manufacturing

PN 1011071A Logic Product Development Company, All Rights Reserved 12

blocks will be copied. (As mentioned above, it is important that device has all of its files
placed at the beginning of the NAND partition, which can be assured by erasing the NAND
prior to placing the files on it.) 4016 blocks multiplied by 32 chunks per block equals 128,512
chunks (pages). Existing bad blocks will be skipped on the device during the copy.

5. Mount the SD card

losh> mount fatfs /dev/sdmmc0a /sd –rw

6. Extract the raw file using the ‘dd’ command. (Information about the ‘dd’ command can be
found in the LogicLoader User’s Manual.) This example assumes a copy of all 62.75 MB (the
size of 128,512 pages that is used by the ‘dd’ command) of NAND flash.

losh> dd if:/dev/nand0 of:/sd/NAND0.IMG count:128512 ibs:528 obs:528
100%
in: 128512 out: 128512 skipped: in:0 out:0 (r:0)

7. Perform a check with an md5sum on the files in NAND flash if YAFFS is mounted as a file
system; also look at the directory and file structure.

losh> part-add /dev/nand0 a 0 4096;
losh> mount yaffs /dev/nand0a /YaffsPart1;
losh> md5sum /YaffsPart1/NK.bin

125c64a58c84c3ffa268c88358bea2ee
losh> ls /YaffsPart1
 : NK.bin 8166363
 : testlog.txt 85
 D : lost-found 512
losh>

8. Using a second SOM if possible, erase all of the NAND flash memory to make sure the file
burns appropriately, then do a complete power cycle to make sure that no file system
partition info remains in RAM.

losh> erase B0 B4096 /dev/nand0;

9. Mount the SD card and use the ‘dd’ command to burn the raw file from the SD card to the
NAND flash. (Note: make sure that the board does not lose power during this time; any
interruption could cause the burn to fail and the board would no longer be able to boot
properly without using a JTAG device to reprogram.) The commands should look like this:

losh> mount fatfs /dev/sdmmc0a /sd -rw
losh> dd if:/sd/NAND0.IMG of:/dev/nand0 count:128512 ibs:528 obs:528

and the output of this sequence should look like this:

 100%
 in:128512 out:128512 skipped: in:0 out:0 (r:0)
losh>

10. If the ‘dd’ command returns without errors or with an ‘unable to mount’ error, the board can
be safely powered off and back on. When powered back on, the board should run code as
expected for production.

11. A checksum can be performed on specific files in YAFFS and should match the original
md5sum values. Also, the file structure should look the same; see Figure 4.4 below.

AN 390 Loading Custom SW in Manufacturing

PN 1011071A Logic Product Development Company, All Rights Reserved 13

Figure 4.4: Md5sum Check

12. Logic will need the NAND0.IMG file. Send Logic a Zip file containing the NAND0.IMG file, a
description of what is in the file, and a document that includes all the steps used to create the
image (including command line arguments used in the ‘dd’ command). An easy way to
provide the steps used to create the image is to send a terminal log of the LogicLoader
session that created the image. Providing this information will help Logic burn the image and
verify that all data is properly captured, as well as to help troubleshoot any potential failures
in the future. Note: For large file transfers, Logic can set up a WebDAV (i.e., FTP) account
for you.

4.2.1.1 Creating the NAND raw programming file for multiple partitions

If two partitions are contained on the NAND device, a raw programming file will have to be
created for each partition (e.g., NAND0a.IMG and NAND0b.IMG). If the ‘dd’ command were used
to create one image for an entire NAND device with two partitions, it could write file data from one
partition to the other since it has no idea of what a partition is or where the partitions are located.
The following provides an example of using the ‘dd’ command twice to create two different raw
programming files for the two partitions.

For this example, assume there are two partitions, each covering half of the NAND device. Each
partition covers 32 MB or 2048 blocks; however, reserving 80 blocks in each partition for bad
blocks reduces the size available for the image to 1968 blocks or 62,976 pages (chunks). Both
‘dd’ commands have the same page count of 62,976 pages, but the second command needs to
start at the exact location of the second partition. Specifying this start location can be done with
the ‘skip’ parameter. (Tip: The first block is number 0, so the second partition would start on block
2048 or page 65,536; 2048 multiplied by 32 pages per block equals 65,536 pages.)

losh> dd if:/dev/nand0 of:/sd/NAND0A.IMG count:62976 ibs:528 obs:528

losh> dd if:/dev/nand0 of:/sd/NAND0B.IMG count:62976 ibs:528 obs:528
skip:65536

When creating these two file, it is extremely important to provide Logic with this information (the
‘dd’ command options) about how they were created so Logic can recreate and program the parts
correctly. Both .IMG files and the text showing the ‘dd’ command usage must be provided to
Logic.

When burning to a new NAND device, the two LogicLoader commands would look like what
follows:

AN 390 Loading Custom SW in Manufacturing

PN 1011071A Logic Product Development Company, All Rights Reserved 14

losh> dd if:/sd/NAND0A.IMG of:/dev/nand0 count:62976 ibs:528 obs:528

losh> dd if:/sd/NAND0B.IMG of:/dev/nand0 count:62976 ibs:528 obs:528
seek:65536

Notice the second command string uses the ‘seek’ parameter on the ‘of’ file; this parameter
specifies the start location of the second partition.

4.2.2 Creating the NAND raw programming file without LogicLoader

If LogicLoader is not a part of the NAND flash contents because a custom bootloader is used,
preliminary steps to extract the raw file are required. Logic recommends using either a JTAG
device or the custom bootloader code to extract the raw file.

If using a JTAG device, a RAM version of LogicLoader can extract the raw file.

1. Connect the JTAG device, like an Abatron BDI2000, to the SOM.

2. Boot the SOM using the JTAG device.

3. Load and run the SRAM setup .elf file (10XXXXX _SRAM_boot.elf) available in the
LogicLoader release package.

4. Load and run the RAM LogicLoader (10XXXXX_RAM_lolo.elf) from the release package

5. From this point, follow the procedure in Section 4.2.1 above.

5 Summary
There are several different methods for programming software on the i.MX SOM at manufacturing
and the sooner these methods are considered in the development process, the more time will be
saved when manufacturing begins. Logic’s bootloader, LogicLoader, provides the tools to assist
with software programming at manufacturing time. But even if LogicLoader is not used by the
customer, this document can assist with the decision making process by describing specifics to
consider for how software is burned to the SOM at manufacturing.

6 References
■ Logic’s LogicLoader User’s Manual (LoLo version 2.4)

■ Logic’s i.MX31SOM-LV Addendum to LogicLoader User’s Manual

■ Logic’s i.MX27 SOM-LV Addendum to LogicLoader User’s Manual

■ Logic’s LogicLoader Command Description Manual (LoLo version 2.4)

■ Logic’s Application Note 339: LogicLoader Configuration Block Usage

■ Logic’s Customer Module NPI Process – Available upon request

■ Numonyx datasheet NAND512-A2C Revision 3

	Revision History
	Table of Contents
	1 Introduction
	2 Basics
	2.1 Examples and Nomenclature within this Document
	2.2 LogicLoader Functionality Summary
	2.3 NOR Flash Overview
	2.4 NAND Flash Overview
	2.5 LogicLoader ‘dd’ command

	3 Standard Products
	3.1 LogicLoader Scripting Example

	4 Custom Product
	4.1 Creating a Custom NOR Flash Software File
	4.1.1 Creating the NOR raw programming file
	Procedure:

	4.1.2 Creating the NOR raw programming file without LogicLoader

	4.2 Custom NAND Flash Software
	4.2.1 Creating the NAND raw programming file
	Procedure:
	4.2.1.1 Creating the NAND raw programming file for multiple partitions

	4.2.2 Creating the NAND raw programming file without LogicLoader

	5 Summary
	6 References

